



# The role of automatic stabilisers in the European Union business cycle

Vanda Almeida, Salvador Barrios, Francesca D'Auria,
<a href="#">Alberto Tumino</a>, Janos Vargas

EUROMOD Research Workshop Milan, 26 September 2019



#### Outline

- Introduction
- Data and Methods
- Preliminary results
- Conclusions and next steps



#### Introduction

- After the Great Recession growing interest in improving MSs' resilience against idiosyncratic shocks
- Role of fiscal policy
- Discretionary measures vs automatic stabilisers
- Automatic stabilisation: extent to which country tax and benefit systems automatically smooths the impact of shocks
- Main question: how do different components of the tax-benefit system stabilise the economy?



#### Introduction

- Stabilisation property of a proportional income tax: an intuition
  - MY=100 t=0.2 T=20 Y=80
  - Shock
  - MY=50 t=0.2 T=10 Y=40
  - A shock of 50 to MY reduced Y "only" by 40. 10 is absorbed by the tax-benefit system

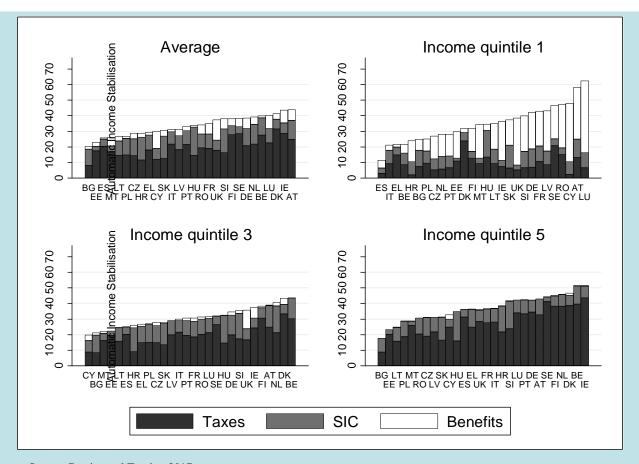


#### Introduction

- The work extends Euromod-based Automatic Stabilisation Indexes on income and demand (Barrios and Tumino 2017; Dolls et al. 2012)
- Interaction micro-macro model allows to estimate the effectiveness of automatic stabilisers in smoothing aggregate demand and output
- Micro model: Euromod
- Macro model: QUEST, DSGE model run by the EC
- Link: Extends Barrios et al. 2019 dynamic scoring by estimating tax functions



#### Data and methods


 Aim: analyse the evolution of key macroeconomic variables at different degree of automatic stabilisation

#### • Steps:

- Derive calibration parameters for QUEST using EUROMOD
- 2. Switch off sequentially Employer SIC, Employee SIC, PIT and re-compute key parameters
- Shock QUEST and analyse the evolution of GDP at the baseline and when automatic stabilisers are shut down



# Data and methods: Income Stabilisation Coefficient



Source: Barrios and Tumino 2017



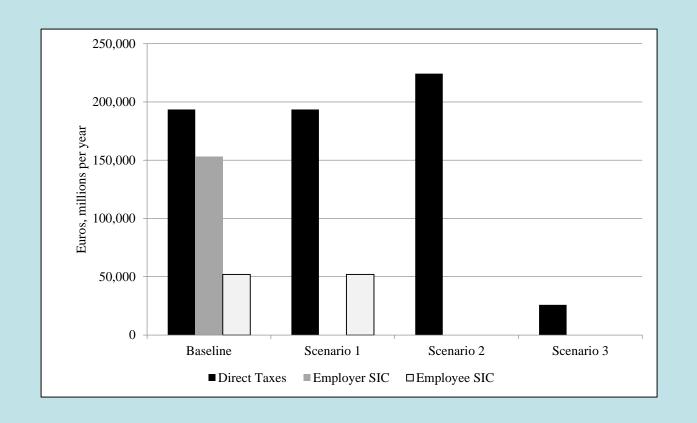
#### Data and Methods

- Link EUROMOD and QUEST through:
  - 1. Tax functions
  - 2. Labour Supply elasticity and predicted participation rates, by skills
  - 3. Average earnings, by skills
- EUROMOD Version i1.0+
- Policy system 2018, SILC 2016, IT (ES, DE, FR)
- Macro Shock in QUEST: Italy 2012, domestic demand shock
- 2 benchmarks: government budget constant in absolute term and as a share of GDP



#### Data and Methods: Tax Functions

- Estimation sample: individuals reporting positive employment income as sole source of market income and not receiving benefits or pensions
- 3 functional forms for average tax rates (Guner et al. (2014)
  - 1. Log specification:  $t(y) = \alpha + \beta \log(y)$
  - 2. HSV specification:  $t(y) = 1 \lambda y^{-\tau}$
  - 3. Power specification:  $t(y) = \delta + \varphi y^{\varepsilon}$
- Separate estimations for employers and employees




#### Data and Methods

- Labour supply elasticities and participation rates derived using a discrete labour supply model running on EUROMOD
- Number of employed and unemployed, as well as gross wages by skill based on SILC

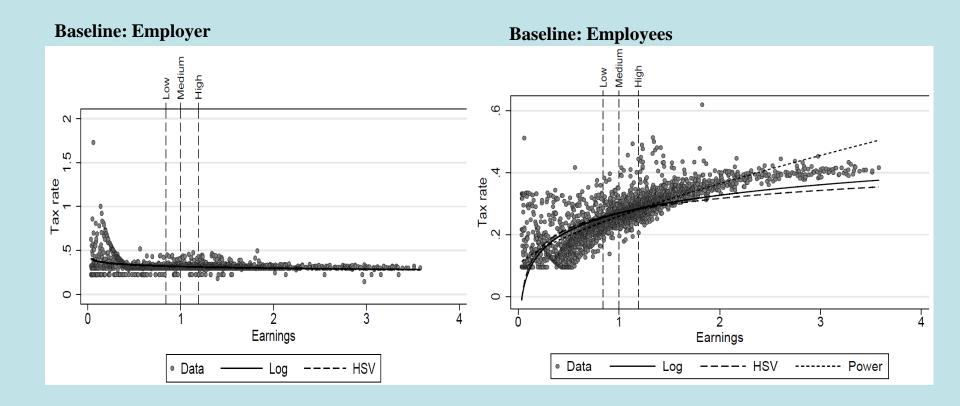


## Results: Scenario description





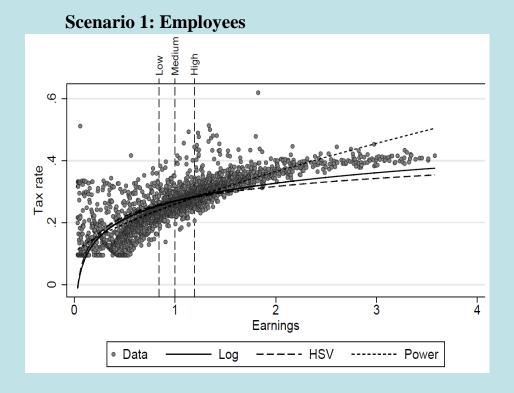
#### Results: Tax Functions


Table 1: Tax function parameters, Italy

|               |     | EMPLOYERS  |           | EMPLOYEES  |            |  |
|---------------|-----|------------|-----------|------------|------------|--|
| Specification |     | Baseline   | Baseline  | Scenario 1 | Scenario 2 |  |
| Log           | α   | 0.317***   | 0.269***  | 0.269***   | 0.204***   |  |
|               |     | (0.001)    | (0.001)   | (0.001)    | (0.001)    |  |
|               | β   | -0.0262*** | 0.0833*** | 0.0833***  | 0.106***   |  |
|               | -   | (0.001)    | (0.001)   | (0.001)    | (0.001)    |  |
|               | AIC | -11347.8   | -11342.4  | -11342.4   | -11580.1   |  |
|               | BIC | -11335.4   | -11330.0  | -11330.0   | -11567.7   |  |
|               | N   | 3729       | 3729      | 3729       | 3817       |  |
| HSV           | λ   | 0.683***   | 0.730***  | 0.730***   | 0.796***   |  |
|               |     | (0.001)    | (0.001)   | (0.001)    | (0.001)    |  |
|               | τ   | -0.0433*** | 0.0957*** | 0.0957***  | 0.113***   |  |
|               |     | (0.002)    | (0.002)   | (0.002)    | (0.001)    |  |
|               | AIC | -11035.2   | -11305.6  | -11305.6   | -11556.2   |  |
|               | BIC | -11022.8   | -11293.1  | -11293.1   | -11543.7   |  |
|               | N   | 3729       | 3729      | 3729       | 3817       |  |
| Power         | δ   | X          | 0.0989*** | 0.0989***  | -0.0639*** |  |
|               |     |            | (0.005)   | (0.005)    | (0.007)    |  |
|               | φ   | X          | 0.161***  | 0.161***   | 0.259***   |  |
|               | 1.  |            | (0.005)   | (0.005)    | (0.008)    |  |
|               | 8   | X          | 0.726***  | 0.726***   | 0.548***   |  |
|               |     |            | (0.023)   | (0.023)    | (0.017)    |  |
|               | AIC | X          | -12959.0  | -12959.0   | -13414.6   |  |
|               | BIC | X          | -12940.3  | -12940.3   | -13395.8   |  |
|               | N   |            | 3729      | 3729       | 3817       |  |

Standard errors in parentheses \*p < 0.05, \*\*p < 0.01, \*\*\*p < 0.001



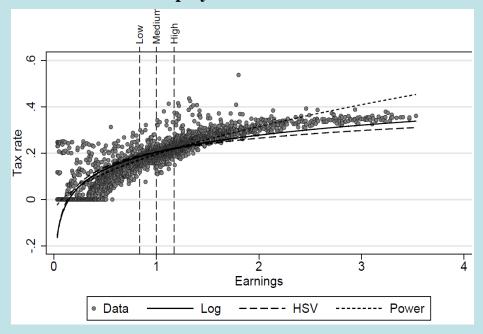

### Results: tax functions





### Results: tax functions

Scenario 1: Employer  $\rightarrow$  N/A






#### Results: tax functions

Scenario 2: Employer  $\rightarrow$  N/A

Scenario 2: Employees





## Results: other parameters

| Parameter                                                            | Baseline   |
|----------------------------------------------------------------------|------------|
| Average elasticity of labour supply wrt wages                        | 0.28160397 |
| Elasticity of labour supply wrt wages high skilled                   | 0.12239733 |
| Elasticity of labour supply wrt wages medium skilled                 | 0.23541096 |
| Elasticity of labour supply wrt wages low skilled                    | 0.42686641 |
| Exogenous variables in QUEST                                         |            |
| Predicted number of individuals supplying zero hours, high skilled   | 3,987,933  |
| Predicted number of individuals supplying zero hours, medium skilled | 10,261,055 |
| Predicted number of individuals supplying zero hours, low skilled    | 8,596,522  |
| Endogenous variables in QUEST (1st guess)                            |            |
| Number employed high skilled                                         | 3,961,910  |
| Number employed medium skilled                                       | 8,139,715  |
| Number employed low skilled                                          | 5,188,099  |
| Number unemployed high skilled                                       | 655,150    |
| Number unemployed medium skilled                                     | 2,022,939  |
| Number unemployed low skilled                                        | 2,245,469  |
| Average gross real wage high skilled                                 | 37,100     |
| Average gross real wage medium skilled                               | 27,204     |
| Average gross real wage low skilled                                  | 21,514     |



#### Macro effects: caveats

- QUEST baselines calibrated using the power tax function for employees and a constant tax rate for employers.
- Similar to Guner et al. (2014), results compare baseline with scenario where all automatic stabilisers are shut-down. No intermediate steps.
- Automatic stabilisers switched off include: pit, sic, consumption taxes, corporate income tax and unemployment benefits are switched off.



## Results: QUEST

#### Role of automatic stabilisers (Baseline vs Guner et. al (2014) specification)

|                         |                | Percentage change  | Percentage smoothing |             |             |
|-------------------------|----------------|--------------------|----------------------|-------------|-------------|
|                         | Stabilisers on | Benchmark budget 1 | Benchmark budget 2   | Benchmark 1 | Benchmark 2 |
| Real GDP                | -2.28          | -2.74              | -3.12                | 0.17        | 0.27        |
|                         |                |                    |                      |             |             |
| Value added T           | -1.94          | -2.12              | -2.34                | 0.08        | 0.17        |
| Value added NT          | -2.08          | -2.66              | -3.12                | 0.22        | 0.33        |
|                         |                |                    |                      |             |             |
| Domestic private demand | -4.81          | -5.83              | -5.58                | 0.18        | 0.14        |
| Private consumption     | -3.75          | -4.98              | -4.69                | 0.25        | 0.20        |
| Private investment      | -10.40         | -10.31             | -10.28               | -0.01       | -0.01       |

Percentage Smoothing=1-Change(Stabilisers ON)/Change(Stabilisers OFF)



#### Results

- Using log specification and scenario 3 roughly half of the percentage smoothing (Results not available yet)
- Taxes and social insurance contributions significantly smooth the effect of shocks on the business cycle
- The size of the smoothing effect depends on the assumptions about constant government budget
- Domestic private demand and private consumption also respond to automatic stabilisers



### Next steps

- Add progressive shut down of automatic stabilisers in QUEST
- Improve sample selection
- Calibrate parameter on liquidity constrained individual in QUEST using EUROMOD
- Study trajectory to Steady State in QUEST
- Repeat the exercise for Germany, France and Spain

