Considering the addition of Spatial, Dynamic dimensions and/or Alternative Unit of Analyses in EUROMOD

Prof. Cathal O’Donoghue
Dean, College of Arts, Social Sciences and Celtic Studies
National University of Ireland, Galway
Understanding Complexity
Sources of Complexity

Core Purpose of Microsimulation Models
Understand and Manage Complexity

Population

Behaviour

Policy
Sources of Complexity – Dynamic Models

- Population
- Behaviour
- Policy
- Time
Sources of Complexity – Spatial Models

Population

Behaviour

Policy

Place
Dynamics
Issue

- Temporal Dimension important because
 - Policy Changes over time
 - Different market conditions
 - Underlying population changes – Ageing
 - Dynamics and Mobility
 - Policies that depend upon life-cycle attributes
 - Period of Analysis – Lifetime distribution quite different to current or annual
Issue

- Many EU wide cross-cutting problems
 - Ageing
 - Social Exclusion and Poverty
 - Public Finance Cost of Ageing
 - Implications for Mobility of Work of Social Insurance Pension Systems
 - Behavioural Change
- EU role in monitoring Eurozone public finances
 - Pensions and Social Insurance are very important components
Ageing and Reweighting

• Dynamic – Ageing (Longitudinal)
 • System of Equations (j) that simulate labour market and demographic characteristics, incorporating individual transitions $Y_{ijt} = (BX_{ijt} + u_{ij} + v_{ijt})$

• Dynamic – Ageing (Cross-sections)
 • System of Equations (j) that simulate labour market and demographic characteristics, for cross-sections $Y_{ijt} = (BX_{ijt} + e_{ijt})$

• Static – Ageing
 • Reweighting the Data to correspond to control totals
Dynamic Microsimulation

- Takes a system of equations – age individuals over time
- Sometimes constrain to external totals
Spectrum of Analyses

- Simulating entitlement of time-dependent benefits in a single year
- Nowcasting
- Simulation of single cohort over a full-lifecycle
- Simulating full cross-section over time
- Simulating Inter-generational and Intra-Generational impacts
- Simulating behavioural responses to these instruments
Spectrum of Analyses

- Simulating entitlement of time-dependent benefits in a single year
- **Nowcasting**
- Simulation of single cohort over a full-lifecycle
- Simulating full cross-section over time
- Simulating Inter-generational and Intra-Generational impacts
- Simulating behavioural responses to these instruments
Spectrum of Analyses

<table>
<thead>
<tr>
<th>Data</th>
<th>Cohort</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simulating entitlement of time-dependent benefits in a single year</td>
<td></td>
</tr>
<tr>
<td>Nowcasting</td>
<td></td>
</tr>
<tr>
<td>Simulation of single cohort over a full-lifecycle</td>
<td></td>
</tr>
<tr>
<td>Simulating full cross-section over time</td>
<td></td>
</tr>
<tr>
<td>Simulating Inter-generational and Intra-Generational impacts</td>
<td></td>
</tr>
<tr>
<td>Simulating behavioural responses to these instruments</td>
<td></td>
</tr>
</tbody>
</table>
Spectrum of Analyses

- Simulating entitlement of time-dependent benefits in a single year
- Nowcasting
- Simulation of single cohort over a full-lifecycle
- **Simulating full cross-section over time**
- Simulating Inter-generational and Intra-Generational impacts
- Simulating behavioural responses to these instruments
Spectrum of Analyses

• Simulating entitlement of time-dependent benefits in a single year
• Nowcasting
• Simulation of single cohort over a full-lifecycle
• Simulating full cross-section over time
• Simulating Inter-generational and Intra-Generational impacts
• Simulating behavioural responses to these instruments
Simulating entitlement of time-dependent benefits in a single year

- Long-term historical dataset (typically administrative) allows for eligibility conditions to insurance benefits
- Li and O’Donoghue (2012) backcasted using retrospective labour market experience sufficient information to model current pensions
- Percentage of correctly simulated eligibility

<table>
<thead>
<tr>
<th>Pension Type</th>
<th>Correctly Simulated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contributory State Pension</td>
<td>96.08%</td>
</tr>
<tr>
<td>Occupational Pension</td>
<td>98.25%</td>
</tr>
<tr>
<td>Private Pension</td>
<td>97.36%</td>
</tr>
</tbody>
</table>

Example: Nowcasting

- Simulate historical distributional surveys to the present

Example: Simulation of single cohort over a full-lifecycle

- Annual versus Lifetime
 Redistribution for a single cohort

Example: Simulating full cross-section over time

- Simulation of pensioner poverty over time for existing and universal pension plan

Trend in Poverty Headcount rate

1995 2015 2035

Baseline Universal

Example: Simulating Inter-generational impacts

- Cumulative net gain from welfare state by generation over lifetime

Example: Decomposing Change in Inequality 2007-2012

- Decomposing inequality changes into effects 2007-2012
 - Market Income and Demographic changes have been pushing inequality upwards
 - Labour market structure and policy have been pushing in the other direction

Av. Change in Inequality due to components

<table>
<thead>
<tr>
<th>Change</th>
<th>Demographic</th>
<th>Market Income</th>
<th>Tax-Benefit</th>
</tr>
</thead>
<tbody>
<tr>
<td>College of</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arts, Social</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sciences and</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Celtic Studies</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Example: Decomposition of Impact of Crisis between the UK and Ireland

<table>
<thead>
<tr>
<th>Component</th>
<th>Pre-Crisis</th>
<th>Post Crisis</th>
</tr>
</thead>
<tbody>
<tr>
<td>UK Gini</td>
<td>0.317</td>
<td>0.305</td>
</tr>
<tr>
<td>IE-UK Gini</td>
<td>-0.042</td>
<td>-0.034</td>
</tr>
<tr>
<td>MC</td>
<td>0.019</td>
<td>0.018</td>
</tr>
<tr>
<td>Returns</td>
<td>0.016</td>
<td>0.031</td>
</tr>
<tr>
<td>TB</td>
<td>0.02</td>
<td>-0.052</td>
</tr>
</tbody>
</table>

- The cross-country differentials in disposable income have narrowed during the crisis compared to 2007,
- Due to a larger drop in inequality in the UK than in Ireland,
- Despite a widening gap in redistributive impact of TB system
- Due to a large increase in market income inequality in Ireland

Sologon, Van Kerm, O'Donoghue et al., (forthcoming)
How to Implement in EUROMOD

• It was one time...
 • The LIAM framework was built using the same algorithms and philosophy as EUROMOD –
 • Both have diverged LIAM2 and later EUROMOD
• Use dynamic microsimulation model to produce future panels
• Use EUROMOD to simulate policy
• Synergies in cross-country development

How to Implement in EUROMOD

- However
 - Family not Household Unit of Analysis
 - Lack of comparative long-term panel data since ECHP
 - Relatively expensive
Spatial
Issue

• Sub-national unit such as Region of particular interest to EU. Cohesion, Regional Development and Rural Development Policy

• Statistical method to generate spatially referenced data, combining small area Census Information and Household Micro Data

• Scope
 • National – NATSEM (Australia) SMILE (Ireland)
 • City – SimLeeds (Leeds); UrbanSim (Berkeley)

• Spatial Unit
 • Address
 • District
 • County/Region etc.
Issue

• Techniques
 • Statistical Matching in World Bank Poverty Mapping Literature linking Micro Income/Exp Survey Data to Census Micro Data
 • Reweighting to County control totals (Australia)
 • Simulated Annealing (Leeds)
 • Quota Sampling (Ireland)

• Issues with
 • Small Cell Sizes and Weights
 • “top 1%”
Example Analysis - Improving Income Quality – Imputed Rent (Scope: Nation; Unit: District)

Kilgarriff, Paul, Martin Charlton, Ronan Foley, Cathal ODonoghue
The Impact of Housing Consumption Value on the Spatial Distribution of Welfare, *Journal of Housing Economics*.
Example Analysis - Improving Income Quality – Commuting Cost (Scope: Nation; Unit: District)

Example Analysis — Flood Impact (Scope: County; Unit: District)

- Direct and Indirect household impacts of Storm Desmond
- County Galway

How to Implement in EUROMOD

- EUROMOD is already a Spatial Microsimulation Model
 - Scope European Union
 - Spatial Unit – Country (Region)
- To disaggregate Spatial Unit Further
 - Source Small Area Census constraint Data or micro data
 - Select Reweighting, Re-sampling or Statistical Matching as appropriate to “spatialize” EU-SILC.
 - E.g. NATSEM, SMILE
Unit of Analysis
Issue

- Farm Unit of Analysis
- Agriculture and Food
 - EU Responsibility for policy
- Significant financial resources
- Large distributional dimension
- Policy driven industry
- Currently modelling mainly focuses on gross incomes
 - However general and farm specific MT benefits and taxation has major incentive implications
Example Analysis: Distributional Analysis of CAP Reform - Winners and Losers Analysis from post 2014 CAP analysis

Example Analysis: Impact of Tax-Benefit System on Policy Incentives

- Policies that aim to incentivise
 - Food security
 - Environmental Improvement
 - Land Use Change
- Severely impacted by means tested benefits
Example Analysis: Farm Household Viability

- Incorporating Tax and Benefits alter the level of viability (Farm income relative to working off farm etc)
How to Implement in EUROMOD

- DG-Agri collects comparable micro data (since the Treaty of Rome) on farm incomes and characteristics – FADN
- Contains data to simulate capital, investment deductions and other business taxes
- Need to statistically match to FADN data to Household Data (SILC) to do distributional and tax analysis, particularly in the case of joint taxation
Caution

- Move to increase complexity of models
- Complexity → More costly, time consuming, harder to interpret
- All Models are wrong – some are useful (Box)
- KISS → Simpler may be better
- Just because we can do it doesn’t mean we should
- Challenge is to have enough complexity to produce a Model that is Useful
Forthcoming

• Practical Microsimulation Modelling (Oxford University Press)