Considering the addition of Spatial, Dynamic dimensions and/or Alternative Unit of Analyses in EUROMOD

Prof. Cathal O'Donoghue Dean, College of Arts, Social Sciences and Celtic Studies National University of Ireland, Galway

Understanding Complexity

contributions to economic analysis

Cathal O'Donoghus

Handbook of Microsimulation Modelling

Sources of Complexity

Core Purpose of Microsimulation Models
Understand and Manage Complexity

Sources of Complexity – Dynamic Models

Sources of Complexity – Spatial Models

Dynamics

Issue

- Temporal Dimension important because
 - Policy Changes over time
 - Different market conditions
 - Underlying population changes Ageing
 - Dynamics and Mobility
 - Policies that depend upon life-cycle attributes
 - Period of Analysis Lifetime distribution quite different to current or annual

Issue

- Many EU wide cross-cutting problems
 - Ageing
 - Social Exclusion and Poverty
 - Public Finance Cost of Ageing
 - Implications for Mobility of Work of Social Insurance Pension Systems
 - Behavioural Change
- EU role in monitoring Eurozone public finances
 - Pensions and Social Insurance are very important components

Ageing and Reweighting

- Dynamic Ageing (Longitudinal)
 - System of Equations (j) that simulate labour market and demographic characteristics, incorporating individual transitions $Y_{ijt} = (BX_{ijt} + u_{ij} + v_{ijt})$
- Dynamic Ageing (Cross-sections)
 - System of Equations (j) that simulate labour market and demographic characteristics, for cross-sections $Y_{ijt} = (BX_{ijt} + e_{ijt})$
- Static Ageing

OÉ Gaillimh

• Reweighting the Data to correspond to control totals

Dynamic Microsimulation

- Takes a system of equations
 age individuals over time
- Sometimes constrain to external totals

• Simulating entitlement of timedependent benefits in a single year

- Nowcasting
- Simulation of single cohort over a full-lifecycle
- Simulating full cross-section over time
- Simulating Inter-generational and Intra-Generational impacts
- Simulating behavioural responses to these instruments

Data

Cohort

NUI Galway OÉ Gaillimh

Present

Data

- Simulating entitlement of timedependent benefits in a single year
- Nowcasting
- Simulation of single cohort over a full-lifecycle
- Simulating full cross-section over time
- Simulating Inter-generational and Intra-Generational impacts
- Simulating behavioural responses to these instruments

Data

Cohort

- Simulating entitlement of timedependent benefits in a single year
- Nowcasting
- Simulation of single cohort over a full-lifecycle
- Simulating full cross-section over time
- Simulating Inter-generational and Intra-Generational impacts
- Simulating behavioural responses to these instruments

• Simulating entitlement of timedependent benefits in a single year

- Nowcasting
- Simulation of single cohort over a full-lifecycle
- Simulating full cross-section over time
- Simulating Inter-generational and Intra-Generational impacts
- Simulating behavioural responses to these instruments

- Simulating entitlement of timedependent benefits in a single year
- Nowcasting
- Simulation of single cohort over a full-lifecycle
- Simulating full cross-section over time
- Simulating Inter-generational and Intra-Generational impacts
- Simulating behavioural responses to these instruments

Simulating entitlement of time-dependent benefits in a single year

- Long-term historical dataset (typically administrative) allows for eligibility conditions to insurance benefits
- Li and O'Donoghue (2012) backcasted using retrospective laborated experience sufficient information to model current pensi
- Percentage of correctly Simulated Eligibility

Pension Type	Correctly Simulated
Contributory State Pension	96.08%
Occupational Pension	98.25%
Private Pension	97.36%

Individual Income Change
 Before and After Retirement

Example: Nowcasting

 Simulate historical distributional surveys to t present

O'Donoghue, C. (forthcoming). Nowcasting in microsimulation models: A methodological survey. Journal of Artificial Societies and Social Simulation, 17(4), 12.

Example: Simulation of single cohort over a full-lifecycle

Av. Change in Inequality due to components

 Annual versus Lifetime Redistribution for a single cohort

Example: Simulating full cross-section over time Trand in Poverty Heads

Trend in Poverty Headcount rate

 Simulation of pensioner poverty over time for existing and universal pension plan

94.Baroni, E. & O'Donoghue, C. (2009). Poverty impact of state welfare pension reform on the elderly: An analysis of the reform proposals in the 2007 Irish Green Paper (Research Report No. 09/09). Retrieved from Combat Poverty Agency website: http://www.combatpoverty.ie/publications/workingpapers.htm

Example: Simulating Inter-generational impacts

• Cumulative net gain from welfare state by generation over lifetime

Example: Decomposing Change in Inequality 2007-2012

Av. Change in Inequality due to components

- Decomposing inequality changes into effects 2007-2012
 - Market Income and Demographic changes have been pushing inequality upwards
 - Labour market structure and policy have been pushing in the other direction

Example: Decomposition of Impact of Crisis between the UK and Ireland

	Pre-Crisis	Post Crisis
UK Gini	0.317	0.305
IE-UK Gini	-0.042	-0.034
MC	0.019	0.018
Returns	0.016	0.031
TB	0.02	-0.052

- The cross-country differentials in disposable income have narrowed during the crisis compared to 2007,
- Due to a larger drop in inequality in the UK than in Ireland,
- Despite a widening gap in redistributive impact of TB system
- Due to a large increase in market income inequality in Ireland

How to Implement in EUROMOD

- It was one time...
 - The LIAM framework was built using the same algorithms and philosophy as EUROMOD –
 - Both have diverged LIAM2 and later EUROMOD
- Use dynamic microsimulation model to produce future panels
- Use EUROMOD to simulate policy
- Synergies in cross-country development

Philippe Liégeois and Gijs Dekkers (2009) Combining EUROMOD and LIAM tools for the development of dynamic cross-sectional microsimulation models: a sneak preview. in A. Harding, P Williamson and A Zaidi (eds.) *New Frontiers in Microsimulation Modelling*. Farnham: Ashgate.

How to Implement in EUROMOD

- However
 - Family not Household Unit of Analysis
 - Lack of comparative long-term panel data since ECHP
 - Relatively expensive

Spatial

Issue

- Sub-national unit such as Region of particular interest to EU. Cohesion,
 Regional Development and Rural Development Policy
- Statistical method to generate spatially referenced data, combining small area Census Information and Household Micro Data
- Scope
 - National NATSEM (Australia) SMILE (Ireland)
 - City SimLeeds (Leeds); UrbanSim (Berkeley)
- Spatial Unit
 - Address
 - District
 - County/Region etc.

Issue

- Techniques
 - Statistical Matching in World Bank Poverty Mapping Literature linking Micro Income/Exp Survey Data to Census Micro Data
 - Reweighting to County control totals (Australia)
 - Simulated Annealing (Leeds)
 - Quota Sampling (Ireland)
- Issues with
 - Small Cell Sizes and Weights
 - "top 1%"

Example Analysis - Improving Income Quality

- Imputed Rent (Scope: Nation; Unit: District)

Kilgarriff, Paul, Martin Charlton, Ronan Foley, Cathal ODonoghue The Impact of Housing Consumption Value on the Spatial Distribution of Welfare, *Journal of Housing Economics*.

Example Analysis - Improving Income Quality

- Commuting Cost (Scope: Nation; Unit:

District)

Vega, A., Kilgarriff, P., O'Donoghue, C., & Morrissey, K. (2016). The spatial impact of commuting on income: a spatial microsimulation approach. *Applied Spatial Analysis and Policy*, 1-21.

Example Analysis — Flood Impact (Scope: County; Unit: District)

- Direct and Indirect household impacts of Storm Desmond
- County Galway

How to Implement in EUROMOD

- EUROMOD is already a Spatial Microsimulation Model
 - Scope European Union
 - Spatial Unit Country (Region)
- To disaggregate Spatial Unit Further
 - Source Small Area Census constraint Data or micro data
 - Select Reweighting, Re-sampling or Statistical Matching as appropriate to "spatialize" EU-SILC.
 - E.g. NATSEM, SMILE

Unit of Analysis

Issue

- Farm Unit of Analysis
- Agriculture and Food
 - EU Responsibility for policy
- Significant financial resources
- Large distributional dimension
- Policy driven industry
- Currently modelling mainly focuses on gross incomes
 - However general and farm specific MT benefits and taxation has major incentive implications

Example Analysis: Distributional Analysis of CAP Reform - Winners and Losers Analysis from post 2014 CAP analysis

Example Analysis: Impact of Tax-Benefit System on Policy Incentives

- Policies that aim to incentivise
 - Food security
 - Environmental Improvement
 - Land Use Change
- Severely impacted by means tested benefits

Example Analysis: Farm Household Viability

 Incorporating Tax and Benefits alter the level of viability (Farm income relative to working off farm etc)

How to Implement in EUROMOD

- DG-Agri collects comparable micro data (since the Treaty of Rome) on farm incomes and characteristics – FADN
- Contains data to simulate capital, investment deductions and other business taxes
- Need to statistically match to FADN data to Household Data (SILC) to do distributional and tax analysis, particularly in the case of joint taxation

Caution

- Move to increase complexity of models
- Complexity→ More costly, time consuming, harder to interpret
- All Models are wrong some are useful (Box)
- KISS \rightarrow Simpler may be better
- Just because we can do it doesn't mean we should
- Challenge is to have enough complexity to produce a Model that is Useful

Forthcoming

Practical Microsimulation Modelling (Oxford University Press)