Data and modelling for analyzing climate change policies

Petra Zsuzsa Lévay

Centre for Social Policy – University of Antwerp

JRC Fiscal Policy Modelling Workshop Seville, 12-14 February 2020

Overview

- Introduction
- Data
- Distribution and determinants of household carbon footprints
- Carbon tax simulation
- Conclusion

"Rapid and far reaching" transitions

- "Rapid and far reaching" transitions
- Climate and social inequality
 - unequal contribution to emissions
 - unequal exposure to consequences
 - unequal capacity to protect against climate risks
 - unequal incidence of costs and benefits of climate policy

- "Rapid and far reaching" transitions
- Climate and social inequality
 - unequal contribution to emissions
 - unequal exposure to consequences
 - unequal capacity to protect against climate risks
 - unequal incidence of costs and benefits of climate policy
- Carbon taxation
 - Effective
 - Regressive effects

- Research questions
 - 1) How GHG emissions are distributed across households?
 - 2) What determines the level of GHG emissions of households?

Research questions

- 1) How GHG emissions are distributed across households?
- 2) What determines the level of GHG emissions of households?
- Micro-level: households
 - Direct emissions
 - Indirect emissions

Research questions

- 1) How GHG emissions are distributed across households?
- 2) What determines the level of GHG emissions of households?
- Micro-level: households
 - Direct emissions
 - Indirect emissions
- Consumption based emissions accounting

Research questions

- 1) How GHG emissions are distributed across households?
- 2) What determines the level of GHG emissions of households?
- Micro-level: households
 - Direct emissions
 - Indirect emissions
- Consumption based emissions accounting
- Case: Belgium

Overview

Introduction

Data

- Distribution and determinants of household carbon footprints
- Carbon tax simulation
- Conclusion

- Emissions accounting
- Consumption-based vs production-based

- Emissions accounting
- Consumption-based vs production-based

Raw Materials \rightarrow Supplier \rightarrow Manufacturer \rightarrow Distributor \rightarrow Retailer \rightarrow Consumer

- Emissions accounting
- Consumption-based vs production-based

Raw Materials \rightarrow Supplier \rightarrow Manufacturer \rightarrow Distributor \rightarrow Retailer \rightarrow Consumer

- Emissions accounting
- Consumption-based vs production-based

Single-region environmentally extended input-output model

Single-region environmentally extended input-output model

Input-output model

- Maps interdependencies between economic sectors
- Intermediate vs final output
- Monetary flows

Single-region environmentally extended input-output model

Input-output model

- Maps interdependencies between economic sectors
- Intermediate vs final output
- Monetary flows

Environmentally extended

Emissions inventory data of economic sectors

Single-region environmentally extended input-output model

Input-output model

- Maps interdependencies between economic sectors
- Intermediate vs final output
- Monetary flows

Environmentally extended

Emissions inventory data of economic sectors

Single-region

Domestic production technology assumption

Household consumption	GHG emissions	

Frère et al., 2018

Household consumption

- Belgian Household Budget Survey (2014)
- Expenditures on products and services purchased by households listed in the COICOP nomenclature

Household consumption

- Belgian Household Budget Survey (2014)
- Expenditures on products and services purchased by households listed in the COICOP nomenclature

GHG emissions

 Direct emissions coefficients: for fuels for personal motorized vehicles and domestic energy use based on the COPERT model

Household consumption

- Belgian Household Budget Survey (2014)
- Expenditures on products and services purchased by households listed in the COICOP nomenclature

- Direct emissions coefficients: for fuels for personal motorized vehicles and domestic energy use based on the COPERT model
- Indirect emissions coefficients: for all COICOP products and services based on the single region environmentally extended input-output model of the Federal Planning Bureau

Household consumption

- Belgian Household Budget Survey (2014)
- Expenditures on products and services purchased by households listed in the COICOP nomenclature

€

- Direct emissions coefficients: for fuels for personal motorized vehicles and domestic energy use based on the COPERT model
- Indirect emissions coefficients: for all COICOP products and services based on the single region environmentally extended input-output model of the Federal Planning Bureau

Household consumption

- Belgian Household Budget Survey (2014)
- Expenditures on products and services purchased by households listed in the COICOP nomenclature

- Direct emissions coefficients: for fuels for personal motorized vehicles and domestic energy use based on the COPERT model
- Indirect emissions coefficients: for all COICOP products and services based on the single region environmentally extended input-output model of the Federal Planning Bureau

Domestic technology assumption

- Domestic technology assumption
- Homogeneity of price assumption
 - No basic/luxury versions of products

- Domestic technology assumption
- Homogeneity of price assumption
 - No basic/luxury versions of products
- Mixed invoices for electricity and gas
 - Natural gas is the residual after a prediction of electricity using regression with Adj. R² of 0.1493

- Domestic technology assumption
- Homogeneity of price assumption
 - No basic/luxury versions of products
- Mixed invoices for electricity and gas
 - Natural gas is the residual after a prediction of electricity using regression with Adj. R² of 0.1493
- No pollution caused by construction of houses
 - Too infrequent to appear in HBS expenditures
 - Data on stock of houses in HBS not detailed enough

- Domestic technology assumption
- Homogeneity of price assumption
 - No basic/luxury versions of products
- Mixed invoices for electricity and gas
 - Natural gas is the residual after a prediction of electricity using regression with Adj. R² of 0.1493
- No pollution caused by construction of houses
 - Too infrequent to appear in HBS expenditures
 - Data on stock of houses in HBS not detailed enough
- Underreporting in HBS

- Domestic technology assumption
- Homogeneity of price assumption
 - No basic/luxury versions of products
- Mixed invoices for electricity and gas
 - Natural gas is the residual after a prediction of electricity using regression with Adj. R² of 0.1493
- No pollution caused by construction of houses
 - Too infrequent to appear in HBS expenditures
 - Data on stock of houses in HBS not detailed enough
- Underreporting in HBS
- Durables: smoothing

Overview

- Introduction
- Data
- Distribution and determinants of household carbon footprints
- Carbon tax simulation
- Conclusion

Distribution of expenditures and GHG emissions

Distribution of expenditures and GHG emissions

Determinants
Determinants

Multiple regression analysis:

Determinants

Multiple regression analysis:

	(1)	(2)	(3)	(4)	(5)	(6)
	Ln(GHG_all)	ln(GHG_Food)	In(GHG_Energ	In(GHG_Trans	In(GHG_Goods	In(GHG_Servic
			y_housing)	port))	es)
Ln(Income)	0.323***	0.235***	0.114***	0.589***	0.693***	0.582***
	(0.019)	(0.019)	(0.025)	(0.040)	(0.030)	(0.046)

	(1)	(2)	(3)	(4)	(5)	(6)
	Ln(GHG all)	In(GHG Food)	In(GHG Energ	In(GHG Trans	In(GHG Goods	In(GHG Servic
			y_housing)	port))	es)
Ln(Income)	0.323***	0.235***	0.114***	0.589***	0.693***	0.582***
	(0.019)	(0.019)	(0.025)	(0.040)	(0.030)	(0.046)
Number of adults						
1	0.000	0.000	0.000	0.000	0.000	0.000
	(.)	(.)	(.)	(.)	(.)	(.)
2	0.199***	0.437***	0.103***	0.360***	0.203***	0.175***
l l	(0.017)	(0.019)	(0.025)	(0.036)	(0.023)	(0.049)
3	0.264***	0.573***	0.149***	0.300***	0.126***	0.236***
	(0.023)	(0.027)	(0.032)	(0.065)	(0.030)	(0.062)
>=4	0.354***	0.738***	0.192***	0.284***	0.140***	0.387***
	(0.029)	(0.026)	(0.043)	(0.056)	(0.032)	(0.086)
Nr of children						
0	0.000	0.000	0.000	0.000	0.000	0.000
	(.)	(.)	(.)	(.)	(.)	(.)
1	0.095***	0.123***	0.070**	-0.038	-0.018	0.269***
	(0.015)	(0.023)	(0.024)	(0.040)	(0.018)	(0.039)
2	0.122***	0.225***	-0.009	-0.088*	-0.066**	0.444***
	(0.015)	(0.022)	(0.025)	(0.039)	(0.020)	(0.050)
3	0.190***	0.316***	0.052	-0.105	-0.084*	0.636***
	(0.034)	(0.032)	(0.054)	(0.075)	(0.033)	(0.087)
>=4	0.292***	0.428***	0.122	0.093	0.051	0.730***
	(0.055)	(0.069)	(0.118)	(0.151)	(0.053)	(0.185)

	(1)	(2)	(3)	(4)	(5)	(6)
	Ln(GHG_all)	ln(GHG_Food)	In(GHG_Energ	In(GHG_Trans	In(GHG_Good	ln(GHG_Servi
			y_housing)	port)	s)	ces)
Prof.stat.refpers.						
Working	0.000	0.000	0.000	0.000	0.000	0.000
	(.)	(.)	(.)	(.)	(.)	(.)
Unemployed	-0.085**	-0.084	0.018	-0.404***	-0.198***	-0.246***
	(0.030)	(0.045)	(0.048)	(0.072)	(0.040)	(0.069)
Student	-0.067	-0.120	-0.034	-0.360**	-0.104	0.090
	(0.098)	(0.096)	(0.187)	(0.136)	(0.115)	(0.178)
Housewife	-0.046	-0.127*	0.051	-0.235	-0.096	-0.199
	(0.064)	(0.061)	(0.133)	(0.204)	(0.061)	(0.179)
Incapacitated	-0.046	0.009	0.047	-0.406***	-0.067	-0.062
	(0.034)	(0.037)	(0.059)	(0.074)	(0.039)	(0.075)
Pension	-0.049*	-0.030	-0.007	-0.149**	0.003	-0.053
	(0.025)	(0.024)	(0.037)	(0.056)	(0.033)	(0.060)
Education						
Primary or less	0.000	0.000	0.000	0.000	0.000	0.000
	(.)	(.)	(.)	(.)	(.)	(.)
Lower secondary	0.025	-0.023	0.060	0.055	0.017	0.083
	(0.031)	(0.044)	(0.065)	(0.091)	(0.045)	(0.074)
Upper secondary	0.092**	0.044	0.074	0.262**	0.110^{**}	0.301***
	(0.030)	(0.040)	(0.051)	(0.081)	(0.040)	(0.077)
Tertiary	0.173***	0.147***	0.092	0.323***	0.236***	0.515***
	(0.032)	(0.040)	(0.055)	(0.077)	(0.040)	(0.078)

	(1)	(2)	(3)	(4)	(5)	(6)
	Ln(GHG_all)	ln(GHG_Food)	In(GHG_Energ	In(GHG_Trans	ln(GHG_Good	In(GHG_Servic
			y_housing)	port)	s)	es)
Region						
BXL	0.000	0.000	0.000	0.000	0.000	0.000
	(.)	(.)	(.)	(.)	(.)	(.)
VL	0.019	-0.034	-0.021	0.170^{*}	0.035	0.080
	(0.028)	(0.025)	(0.038)	(0.073)	(0.022)	(0.061)
WA	0.100***	-0.016	0.200***	0.314***	0.017	-0.108
	(0.029)	(0.024)	(0.038)	(0.075)	(0.023)	(0.063)
Nr of rooms						
1	0.000	0.000	0.000	0.000	0.000	0.000
	(.)	(.)	(.)	(.)	(.)	(.)
2	0.185***	0.168^{*}	0.119	0.184	0.126	0.348***
	(0.052)	(0.065)	(0.084)	(0.156)	(0.066)	(0.091)
3	0.248***	0.095	0.218*	0.342*	0.177^{*}	0.462***
	(0.049)	(0.064)	(0.087)	(0.154)	(0.071)	(0.092)
4	0.323***	0.139*	0.330***	0.473**	0.186**	0.465***
	(0.047)	(0.068)	(0.083)	(0.153)	(0.071)	(0.092)
5	0.356***	0.196**	0.405***	0.473**	0.203**	0.466***
	(0.048)	(0.069)	(0.088)	(0.158)	(0.071)	(0.092)
>=6	0.398***	0.230***	0.471***	0.429**	0.236***	0.516***
	(0.049)	(0.067)	(0.088)	(0.165)	(0.069)	(0.097)

	(1)	(2)	(3)	(4)	(5)	(6)
	Ln(GHG_all)	ln(GHG_Food)	In(GHG_Energ	In(GHG_Transp	In(GHG_Goods	In(GHG_Servic
			y_housing)	ort))	es)
House type						
Detached	0.000	0.000	0.000	0.000	0.000	0.000
	(.)	(.)	(.)	(.)	(.)	(.)
Semi-detached	-0.083***	-0.008	-0.134***	-0.175***	-0.012	-0.010
	(0.012)	(0.016)	(0.021)	(0.030)	(0.020)	(0.030)
Apartment	-0.162***	-0.061*	-0.371***	-0.254***	-0.066*	0.137**
	(0.019)	(0.025)	(0.035)	(0.050)	(0.028)	(0.052)
Other	-0.015	-0.046	-0.118	-0.155	0.156	0.170
	(0.082)	(0.135)	(0.171)	(0.188)	(0.126)	(0.191)
Tenure status						
Owner	0.000	0.000	0.000	0.000	0.000	0.000
	(.)	(.)	(.)	(.)	(.)	(.)
Tenant	-0.109***	-0.050*	-0.060*	-0.242***	-0.113***	-0.315***
	(0.016)	(0.024)	(0.026)	(0.045)	(0.018)	(0.043)
Constant	-1.342***	-2.389***	-0.171	-6.080***	-7.021***	-6.931***
	(0.218)	(0.221)	(0.298)	(0.470)	(0.295)	(0.483)
Observations	6128	6128	6128	6128	6128	6128
R ²	0.803	0.584	0.305	0.528	0.731	0.580

Elasticity estimates

Paper	Country	Income elasticity	Expenditure elasticity
Ala-Mantila et al. (2014)	FI	0.607 _g (0.577 _{g,o})	0.802 _g (0.790 _{g,o})
Büchs & Schnepf (2013)	UK	0.432 _{c,o}	
Duarte et al. (2012)	ES		0.84 _{c,o}
Fremstad et al. (2018)	US		0.728 _{c,o}
Girod & Haan, (2010)	СН		$0.94_{c}(1.06_{c}^{-1})$
Isaksen & Narbel (2017)	NO		0.99 _c
Kerkhof et al. (2009)	NL		0.84 _g
Lenzen (1998)	AU	0.55 _g	0.70 _g
Levinson & O'Brien (2019)	US	0.393	
Steen-Olsen et al. (2016)	NO		1.14 _g
Weber & Matthews (2008)	US	0.35-0.52 _{g,o}	0.6-0.7 _{g,o}
Wier et al. (2001)	DK	0.55 _c	0.70 _c
This paper	BE	0.22-0.56 _{g,o}	0.76-0.95 _{g,o}

Note: c: CO₂. g: GHG. o: other controls included in the regression (other than income/expenditures). 1: Without correction for scale economies

Elasticity estimates

Paper	Country	Food	Energy, housing	Transport	Goods	Services
Ala-Mantila et al. (2014) _{g,e}	FI	0.512	0.133		1.233	1.420
Büchs & Schnepf (2013) _{c,i}	UK		0.187	0.598		
Girod & Haan, (2010) _{g,e}	СН	0.081	0.53	1.21	1.30	0.54 ² , 1.26 ³
Isaksen & Narbel (2017) _{c,e}	NO	0.50	0.25 ⁴	1.01		
Steen-Olsen et al. (2016) _{g,e}	NO	0.98	1.02	1.48	1.26-1.29	0.57-1.05
This paper	BE	0.235	0.114	0.589	0.693	0.582

Note: c: CO_2 . g: GHG. o: other controls included in the regression (other than income/expenditures). 1: Without correction for scale economies

GHG emissions grow with increasing income

- GHG emissions grow with increasing income
- \uparrow per capita expenditures; \downarrow emission intensity

- GHG emissions grow with increasing income
- ↑per capita expenditures; ↓emission intensity
- Because of different composition of expenditures
 - 'Food', and 'Energy and housing'
 - Highest share at the bottom
 - Relatively stable over the income distribution
 - 'Transport', 'Goods' and 'Services'
 - Highest share at the top
 - Strong growth over the income distribution

- Main determinants
 - income and household size

- Main determinants
 - income and household size
- Other socio-demographic determinants
 - house type, number of rooms, education, professional status, region

- Main determinants
 - income and household size
- Other socio-demographic determinants
 - house type, number of rooms, education, professional status, region

Policy implications

- Distributional effect of a policy measure will depend on
 - Domain of consumption which is targeted
 - Way of revenue recycling

Overview

- Introduction
- Data
- Distribution and determinants of household carbon footprints
- Carbon tax simulation
- Conclusion

Carbon tax simulations

Carbon tax simulations

- Scenarios
 - 10€/tCO₂ + lump sum redistribution
 - 50€/tCO₂ + lump sum redistribution
 - 100€/tCO₂ + lump sum redistribution

Carbon tax simulations

- Scenarios
 - 10€/tCO₂ + lump sum redistribution
 - 50€/tCO₂ + lump sum redistribution
 - 100€/tCO₂ + lump sum redistribution
- Limitations
 - First order estimates costs passed entirely to consumers, workers, capital owners bear no costs
 - No behavioral response of consumers and producers
 - Environmental co-benefits not examined

• Cf. Grainger and Kolstad, 2010; Kerkhof et al., 2008; Verde and Tol, 2009; Wier et al., 2005

No revenue recycling - 10€/tCO₂

Revenue recycling

Tax rate	Lump sum transfer
10€/tCO ₂	82€
50€/tCO ₂	410€
100€/tCO ₂	821€

- Revenue recycling
 - Reduction of existing taxes (e.g. labor, income, VAT)
 - Increasing benefits (lump-sum redistribution, improve social security system, increase existing social transfers, increase social benefits to low income groups)

- Revenue recycling
 - Reduction of existing taxes (e.g. labor, income, VAT)
 - Increasing benefits (lump-sum redistribution, improve social security system, increase existing social transfers, increase social benefits to low income groups)
- Who pays, what should be taxed, tax rate, timing, use of revenue, enforcement

Revenue recycling

- Reduction of existing taxes (e.g. labor, income, VAT)
- Increasing benefits (lump-sum redistribution, improve social security system, increase existing social transfers, increase social benefits to low income groups)
- Who pays, what should be taxed, tax rate, timing, use of revenue, enforcement

Next steps

- Extend database in EUROMOD with emissions
- Link with CGE model
- Household heterogeneity in bottom income deciles

Publications

- Cooreman, G., Frère, J.-M., Lévay, P.Z., Vanhille, J., Verbist, G., Goedemé, T., 2019. Analysis of the air pollution associated with household consumption in Belgium in 2014: the case of greenhouse gas emissions (No. 8–19), Federal Planning Bureau Working Paper. Brussels.
- Frère, J.-M., Vandille, G., Wolff, S., 2018. The PEACH2AIR database of air pollution associated with household consumption in Belgium in 2014 (No. 3–18), Federal Planning Bureau Working Paper. Brussels.
- Lévay, P., Vanhille, J., Verbist, G., Goedemé, T., 2019. De sociale verdeling van broeikasgassen in België (No. D/2019/6104/07), CSB Berichten. Antwerpen.

References

Ala-Mantila, S., Heinonen, J., Junnila, S., 2014. Relationship between urbanization, direct and indirect greenhouse gas emissions, and expenditures: A multivariate analysis. Ecol. Econ. 104, 129–139. https://doi.org/10.1016/j.ecolecon.2014.04.019

Büchs, M., Schnepf, S. V, 2013. Who emits most? Associations between socio-economic factors and UK households' home energy, transport, indirect and total CO2 emissions. Ecol. Econ. 90, 114–123. https://doi.org/10.1016/j.ecolecon.2013.03.007

Duarte, R., Mainar, A., Sánchez-Chóliz, J., 2012. Social groups and CO2 emissions in Spanish households. Energy Policy 44, 441–450. https://doi.org/10.1016/j.enpol.2012.02.020

Fremstad, A., Underwood, A., Zahran, S., 2018. The Environmental Impact of Sharing: Household and Urban Economies in CO2 Emissions. Ecol. Econ. 145, 137–147. <u>https://doi.org/10.1016/j.ecolecon.2017.08.024</u>

Girod, B., de Haan, P., 2010. More or better? A model for changes in household greenhouse gas emissions due to higher income. J. Ind. Ecol. 14, 31–49. https://doi.org/10.1111/j.1530-9290.2009.00202.x

Grainger, C.A., Kolstad, C.D., 2010. Who pays a price on carbon? Environ. Resour. Econ. 46, 359–376. https://doi.org/10.1007/s10640-010-9345-x

Isaksen, E.T., Narbel, P.A., 2017. A carbon footprint proportional to expenditure - A case for Norway? Ecol. Econ. 131, 152–165. https://doi.org/10.1016/j.ecolecon.2016.08.027

Kerkhof, A.C., Nonhebel, S., Moll, H.C., 2009. Relating the environmental impact of consumption to household expenditures: An input-output analysis. Ecol. Econ. 68, 1160–1170. https://doi.org/10.1016/j.ecolecon.2008.08.004

Lenzen, M., 1998. Energy and greenhouse gas cost of living for Australia during 1993/94. Energy 23, 497–516. https://doi.org/10.1016/S0360-5442(98)00020-6

Levinson, A., O'Brien, J., 2019. Environmental Engel Curves: Indirect Emissions of Common Air Pollutants. Rev. Econ. Stat. 101, 121–133. https://doi.org/10.1162/rest_a_00736

Steen-Olsen, K., Wood, R., Hertwich, E.G., 2016. The Carbon Footprint of Norwegian Household Consumption 1999-2012. J. Ind. Ecol. 20, 582–592. https://doi.org/10.1111/jiec.12405

Verde, S.F., Tol, R.S.J., 2009. The Distributional Impact of a Carbon Tax in Ireland, The Economic and Social Review.

Weber, C.L., Matthews, H.S., 2008. Quantifying the global and distributional aspects of American household carbon footprint. Ecol. Econ. 66, 379–391. https://doi.org/10.1016/j.ecolecon.2007.09.021

Wier, M., Birr-Pedersen, K., Jacobsen, H.K., Klok, J., 2005. Are CO2 taxes regressive? Evidence from the Danish experience. Ecol Econ. 52, 239–251. https://doi.org/10.1016/j.ecolecon.2004.08.005

THANK YOU FOR YOUR ATTENTION!

-

Aggregate consumption categories

1-digit COICOP category	Aggregate category
01 Food and non-alcoholic beverages	'Food and drinks'
02 Alcoholic beverages, tobacco	'Food and drinks'
03 Clothing and footwear	'Goods'
04 Housing, water, electricity, gas and other fuels	'Energy and housing'
05 Furnishings, household equipment and routine maintenance of the house	'Goods' or 'Services'*
06 Health	'Goods' or 'Services'*
07 Transport	'Transport'
08 Communication	'Goods' or 'Services'*
09 Recreation and culture	'Goods' or 'Services'*
10 Education	'Services'
11 Restaurants and hotels	'Services'
12 Miscellaneous goods and services	'Goods' or 'Services'*

Indirect emissions from household consumption

- Industry-level direct production pollution coefficients are determined
 - Air Emissions Accounts + supply and use tables (63 industries)
- Industry coefficients are transformed into product coefficients, using the SUTPROD nomenclature (354 products)
 - Industry technology assumption: all products made by same industry produced with identical input mix
 - Product-level direct production pollution coefficients: weighted average of industries producing the product

Indirect emissions from household consumption

- The direct production pollution is determined
 - Domestic direct pollution from production: product-level direct production pollution coefficients multiplied by final demand for *domestic* products by Belgian households
 - Foreign direct pollution from production: product-level direct production pollution coefficients multiplied by final demand for *imported* products by Belgian households
- The indirect pollution from production is calculated
 - on the basis of the direct production pollution coefficients of the intermediate products used during a production process.
 - 1. domestic indirect production pollution
 - 2. foreign indirect production pollution for domestic final consumption products
 - 3. foreign indirect production pollution for imported final consumption products

Non-frequent expenses

- What?
 - Durable goods, maintenance services, holiday expenses
 - Identification: questions of the personal interview, COICOP classification
- Why?
 - Few purchases during the survey period
 - Large expenditures for few households
 - Majority of households possess and use these items
- How?
 - Smooth expenses among households
 - 14 clusters based on income and household size
 - Mean imputation

Non-frequent expenses

	Ownership known	Ownership not known
Number of items	12	141
Examples	Phone, TV, car, washing machine	Furniture, tools, small electronic products, holidays
Formula for calculation unit price of product <i>k</i>	$UP_{kc} = \sum_{i=1}^{n_c} p_{ik} / \sum_{i=1}^{n_c} q_{ik}$	N/A
Formula for smoothed expenditures on product <i>k</i>	$p_{ikSM} = UP_{kc} * q_{ik}$	$p_{ikSM} = \sum_{i=1}^{n_c} p_{ik} / n_c$

c: cluster, i: household, k: product, n_c: nr of households in cluster c, p: price, q: quantity

Imputation of fuel expenses

- Company cars: fuel expenses payed by employer and do not appear in HBS
- → Fuel expenses of company car owning households are underreported:

	Household with company car	Households without company car
Mean monthly fuel expenses	78.31€	104.98 €
Percentage of households reporting zero fuel expenses (no private car)	64.8%	90.3%
Percentage of households reporting zero fuel expenses (with private car)	22.5%	12.8%

Imputation of fuel expenses

- Fuel mix: majority (87%) of company cars are diesel (Denys, Beckx, and Vanhulsel, 2016) \rightarrow impute diesel

 Threshold based on fuel expenses of households without company car

Nr. of	Number of company cars								
private		zero	one		<u>two</u>		<u>three</u>		
cars	а	b	а	b	а	b	а	b	
0	9	73	44	178	67	121	100	166	
1	88	103	92	118	38	108	0		
2	151	163	105	129	33	33			
3	188	205	174	174					
4	213	219	146	146	139	139			
5	140	140							

Mean monthly fuel expenses (in euro):

Note: a: zero expenditures calculated in mean. b: zero expenditures excluded from calculof mean. Households that own any motorcycle and buy gasoline are service.
Dominance analysis

	Total	Food	Energy housing	and	Transport	Goods	Services
income	28.3	24.4	10.1		29.2	43.3	32.2
adults	19.8	35.4	10.8		17.0	16.5	14.0
children	3.9	5.0	1.4		1.8	1.8	8.3
age	1.2	4.0	3.5		0.8	0.4	1.0
profstat	5.6	4.8	2.5		11.3	8.7	7.6
educ	6.3	4.8	1.7		7.8	9.6	12.7
region	2.0	0.5	12.1		3.0	0.9	2.8
roomnr	14.6	10.8	22.9		11.1	8.2	9.0
house_type	10.1	5.7	26.1		9.1	4.4	3.1
occupancy	8.2	4.6	9.0		8.9	6.1	9.1
R-squared	0.803	0.584	0.305		0.528	0.731	0.580

Note: Numbers indicate the percentage contribution of each variable to the overall fit measure (R-squared)