Green EUROMOD: Climate goals, carbon taxes and inequality in the EU

Sofia Maier^{*1}, Silvia De Poli^{1,2}, Gabriele Bertuzzi^{1,3}, Antonio F. Amores¹

1 Joint Research Centre - Seville

2 Universidad Complutense de Madrid

3 Bocconi University

EUROMOD Research Workshop Seville, 20 September 2023

Content

Introduction: Green EUROMOD project

- 1. Research questions and contribution
- 2. Background and motivation
- 3. Data and methodology
- 4. Results
- 5. Conclusions
- 6. Next Steps

Green EUROMOD project

Model	Data	Analysis / simulations			
EUROMOD (EU tax- benefit microsimulation model)	EU/National SILC	Direct taxes, social insurance contributions, cash benefits			
EUROMOD-ITTv4 (Indirect Tax Tool)	+ consumption expenditures from EU-HBS	Indirect (consumption) taxes: VAT + excises at detailed product level			
Green EUROMOD (Ongoing research project)	+ GHG footprints from EXIOBASE input-output tables	Carbon taxes and other GHG-related fiscal policies			
Inspired by G. Verbist's presentation at a Fiscal Policy Workshop in 2019 (Lévay et al, 2021)					
2022-2024 AMEDI and AMEDI+ (Administrative Agreements JRC - EMPL)					

Green EUROMOD project

Ongoing research work:

1) Data description (bridging, cleaning, imputations, definitions, etc. \rightarrow open access)

2) Climate goals, carbon taxes and inequality in the EU: new insights from microsimulations

Today's presentation

1. Research questions & contribution

Our questions...

- How much are GHG emissions implicitly taxed by consumption tax systems in the EU-27 countries?
- How "green" (tax per emission) and how "fair" (redistributive effect) are current consumption taxes?
- Are carbon taxes necessarily inequality-increasing?

1. Research questions & contribution

Our contribution...

1. New (detailed) picture of the distribution of **household consumption footprints** in the EU-27, at very disaggregated product level

→ Most studies rely on domestic-technology assumption, and/or link GHG to expenditures and not income (e.g. those based on HBS)...We overcome these limitations

2. Implicit carbon price and redistributive effects of consumption taxes

3. Assessment of "green vs equity" trade offs through microsimulations

 \rightarrow We are not aware of papers doing 2-3 for the whole of the EU-27, with data on footprints, income and expenditures and based on current consumption taxes

2. Background and motivation: goals

The increase in the global average temperature to well below 2°C above pre-industrial levels and pursue efforts to 1.5°C

Reduction of 45% GHG emissions

4 environmental UN's Sustainable Development Goals towards 2030 (out of 17)

2030 55% reduction of GHG emissions w.r.t 1990

2050 carbon neutral

2. Background and motivation: challenges

DISCONTENT: PUBLIC SUPPORT e.g. increasing taxes on fuels

DISCONTENT: NOT ENOUGH

2. Background and motivation: what we know

Consensus

- We need to reduce GHG emissions to meet the new climate targets and prevent dangerous global warming \rightarrow change demand (not only production/technology)
- One (among others) policy tools to achieve these goals: carbon pricing
- Sustainable price level, according to Stiglitz-Stern 2017 report: US\$40– 80/tCO2e by 2020, and US\$50–100 by 2030 (social cost even larger, Tol, 2023)
- Carbon taxes are one type of carbon pricing (other: cap-and-trade, e.g. ETS)
- Popular for many decades, e.g. "Polluter pays principle" (OECD, EU)

2. Background and motivation: carbon pricing

Positive features of carbon pricing

✓ Corrects market signals (externalities, Pigou 1922)

✓ More efficient than other tools (e.g. controlling quantities, or increasing more "distortionary" taxes...) – At least since Weitzman (1974), Pizer (2002), Cremer et al (2003).

Challenges / limitations

- Regressivity (mixed evidence, see e.g. Feindt et al, 2021; Amores et al 2023)
- Public support (e.g. see Carattini et al 2017; Klenert et al, 2018; Douenne and Fabre 2022)
- Low coverage (1/4 GHG emissions covered by carbon pricing according to World Bank)

2. Background and motivation: from 8 to 2-3

3. Data and methodology

GHG Multiplier (final demand approach)

 $m_p = \frac{GHG_p}{X_p}$: tons of CO2eq of GHG emissions per EUR spent on product p $m_p = \left| m_{p,direct} \right| +$ m_{p,indirect} Imputing EXIOBASE data into **HBS-SILC EUROMOD files** Emissions embedded Car use, from production and trade heating... \rightarrow Emission intensities by final demand (input-output tables) $m_{ind} = m_{dom} + m_{eu} + m_{row}$ \rightarrow Estimation of trade margins \rightarrow Bridging matrices

3. Data and methodology

Household carbon footprint (total)

$$HCF_{j} = \sum_{p=1}^{P} X_{jp}m_{p} = \sum_{p=1}^{P} s_{jp} Y_{j} m_{p}$$

$$X_{jp}: \text{ consumption expenditures (EUR)}$$

$$m_{p}: \text{ multiplier (CO2eq/EUR)}_{from [EXIOBASE]}$$

$$s_{jp}: \text{ income shares of}_{expenditure (\%) [EU-HBS]}$$

3. Data and methodology: statistics

Figure 1. Per capita carbon footprints by aggregate product category (tons eqCO2 GHG per year)

3. Data and methodology: statistics

Figure 3. Per capita carbon footprints by income deciles (tons eqCO2 GHG per year)

3. Data and methodology: statistics

Figure 4. Per capita carbon footprints across EU-level deciles (tons eqCO2 GHG per year)

Note: Based on Green EUROMOD (HBS-SILC + EXIOBASE). Expenditures scaled-up to NA.

3. Data and methodology

 Cross-country comparative assessment of the greenness and redistributive effect of current consumption taxes:

• *How green?* – implicit carbon price (% GHG taxed)

• Redistributive effect - concentration indices (Gini before vs after tax)

- Simulation of alternative hypothetical carbon taxes
 - *Welfare:* changes in adjusted disposable income
 - Assumptions: non-behavioural responses (morning-after effects)

4. Results: how much are GHG de-facto taxed?

Figure 5. Implicit carbon price (δp) of consumption taxes (EUR per ton eqCO2 GHG)

Note: Based on Green EUROMOD (HBS-SILC 2015, policy system 2019 + EXIOBASE)

4. Results: the green-equity trade off

Figure 6. Implicit carbon price, tax rates, redistributive effect and footprints by product

Note: EU average. Bubble size: GHG per capita eqCO2.

4. Results: income elasticity

 $\ln(HCF_{ic}) = \alpha_c + \beta_c \ln(DY_{ic}) + X\gamma + \mu_c \qquad c = country, i = individual (with equivalised income)$

Figure 7. Income elasticities of carbon footprints (HCF)

Elasticities

- Higher for transport than for energy and food
- Higher for indirect emissions
- Higher in low-income countries

4. Results: simulated scenarios

Scenarios			Description	Budget		
1) Green consumption tax shifts	1.1	CO ₂ Tax	Country-specific flat carbon tax replacing current consumption taxes	neutral		
	1.2	A 2.2	with allowances: up to 2.2 tons of GHG (compatible with Paris Agreement)	neutral		
	1.3	A 5.17	with allowances: up to 5.17 tons of GHG (compatible with 2030 EU goals)	neutral		
2) EU-level CO ₂ tax	2.1	EU CO ₂ Tax (40 EUR)	EU-level flat carbon tax	up		
	2.2	$EU CO_2 Tax + LS$	+ revenue recycling lump sum cash transfer	neutral		

4. Results: carbon price across scenarios

Figure 8. Implicit carbon price (δp) of baseline and simulated scenarios

4. Results: redistributive effects

Figure 9. Redistributive effect of simulated carbon taxes

Commission

Figure 10. Redistributive effect of simulated carbon taxes

Note: Gini of adjusted disposable income – Gini of disposable income (without re-ranking).
 Based on Green EUROMOD (HBS-SILC + EXIOBASE).

Figure 11. Redistributive effect of simulated carbon taxes

Scenario 2: EU-level carbon tax

Baseline consumption taxes

Flat CO2 tax (40 EUR) (2.1) Flat CO2 tax (40 EUR) + lump sum (350 EUR pc annual) (2.2)

4. Results: effect across income quintiles

Figure 12. Effect of reform across income quintiles

Commission

Scenario 1: country-specific green shifts

4. Results: expenditures vs income rankings

Figure 13. Impact across expenditure and income-based quintiles (EU average)

Scenario 2: EU-level carbon tax (2.1) – without lump-sum

- Feindt, et al 2021 in *Understanding regressivity...Energy Economics:* progressivity of a EU-C02 flat taxes at the country level...
- If we would use expenditures our results would be much more progressive too...
- Same discussions as in the literature of consumption taxes, see e.g. Thomas (2022)

5. Conclusions (preliminary)

- Footprints in EU above world average and far from sustainable levels
- Only the poorest decile (EU-level) has footprints <3 tons of eqC02 a year
- Richest 10% EU citizens emit 5x more than poorest 10%
- Low and middle income countries (within the EU) have lower per capita emissions and also lower implicit carbon price despite their higher implicit tax rates → any EU-level flat CO2 tax will disproportionately affect them
- Income elasticity of GHG driven by income elasticity of consumption (multipliers actually tend to decrease across income).
- Key trade offs across different taxation by products: transport is the most taxed and higher implicit carbon pricing among highly polluting goods... but others (e.g. energy/food) are much more inequality-costly.

5. Conclusions (preliminary)

From the simulations:

- Greening consumption taxes [SC 1] (keeping constant government revenues) would be inequality-increasing in most countries (2/3)
 - However, reversed with "sustainable allowances" (2.2, 5.17): design matters
- EU-level CO2 flat tax of 40 EUR [SC 2] is inequality-increasing in 26/27 EU MS
 - However, with budget-neutral lump sum inequality would even decrease
- Conclusions would change if we look into effects over expenditures as some papers do (choice or lack of income data?)

Thanks!

References

- Amores, A.F., Maier, S., Ricci, M., 2023. Taxing household energy consumption in the EU: The tax burden and its redistributive effect. *Energy Policy* 182, 113721.
- Akoğuz, E.C., Capéau, B., Decoster, A., De Sadeleer, L., Güner, D., Manios, K., Paulus, A. and Vanheukelom, T. (2020): A new indirect tax tool for EUROMOD, JRC Technical Report, https://euromod-web.jrc.ec.europa.eu/sites/default/files/2021-03/A%20new%20indirect%20tax%20tool%20for%20EUROMOD%20Final%20Report.pd
- Chancel, L., Piketty, T., Saez, E., Zucman, G., 2022. World inequality report 2022. Harvard University Press.
- Feindt, S., Kornek, U., Labeaga, J.M., Sterner, T., Ward, H., 2021. Understanding regressivity: Challenges and opportunities of european carbon pricing. *Energy Economics* 103, 105550.41
- Hepburn, C., Stern, N., Stiglitz, J.E., 2020. "carbon pricing" special issue in the european economic review. *European Economic Review* 127, 103440
- Ivanova, D., Wood, R., 2020. The unequal distribution of household carbon footprints in Europe and its link to sustainability.
 Global Sustainability 3, e18.
- Klenert, D., Mattauch, L., Combet, E., Edenhofer, O., Hepburn, C., Rafaty, R., Stern, N., 2018. Making carbon pricing work for citizens. *Nature Climate Change* 8, 669–677

References

- Lévay, P. Z., Vanhille, J., Goedemé, T., & Verbist, G. (2021). The association between the carbon footprint and the socioeconomic characteristics of Belgian households. Ecological Economics, 186, 107065.
- Pearce, D., 1991. The role of carbon taxes in adjusting to global warming. The Economic Journal 101, 938–948
- Pigou, A., 1920. The economics of welfare. Macmillan, London
- Stiglitz, J.E., Stern, N., Duan, M., Edenhofer, O., Giraud, G., Heal, G.M., La Rovere, E.L., Morris, A., Moyer, E., Pangestu, M., et al., 2017. Report of the high-level commission on carbon prices. World Bank, 2023. State and Trends of Carbon Pricing 2023. ©. Technical Report. URL: <u>http://hdl.handle.net/10986/39796License:CCBY3.0IGO</u>.
- Thomas, A. (2022). Reassessing the regressivity of the VAT. Fiscal Studies, 43(1), 23-38.
- Tol, R.S., 2023. Social cost of carbon estimates have increased over time. Nature Climate Change, 1–5.
- Weitzman, Martin L., Prices vs. Quantities, The Review of Economic Studies, Volume 41, Issue 4, October 1974, Pages 477– 491, <u>https://doi.org/10.2307/2296698</u>
- William A. Pizer 2022, Combining price and quantity controls to mitigate global climate change, *Journal of Public Economics*, Volume 85, Issue 3, 2002, Pages 409-434

