
Preference based welfare analysis
with unobserved heterogeneity
Bart Capéau, André Decoster,
Liebrecht De Sadeleer, Sebastiaan Maes
KU Leuven

February 12, 2020



Motivation
Preferences have two functions:
• explaining behaviour: positive analysis

• determining preference based welfare: normative analysis
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Motivation

discrete choice over X = {x1, . . . ,xn}

U(xk) = V (xk)+ εk

Should ε be incorporated in a welfare measure?
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Welfare differences: include ε in calculation CV
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Welfare levels:
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• Carpantier - Sapata (2016): conditional means of the random
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Our contribution: include ε to determine distribution of welfare
levels.
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Labour context

Equivalent income in the labour context:

X = {(w0 = 0,h0 = 0),(w1,h1), . . . ,(wn,hn)}

U(Ck ,hk) = V (Ck ,hk)+ εk

Welfare measure: equivalent income
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Equivalent income
Equivalent income:

C = income

T −h = leisure time
1

R

R ′

(C ′,h′)

(C ,h)

WEI(C ,h)

WEI(C ′,h′)

Equivalent income measures income
necessary to obtain the observed utility
level if the individual would have full
leisure time.
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Equivalent income: deterministic and
stochastic

Equivalent income in the labour context.

X = {(w0 = 0,h0 = 0),(w1,h1), . . . ,(wn,hn)}

U(Ck ,hk) = V (Ck ,hk)+ εk

Option 1: "Deterministic"

V (WEI(Ck ,hk),0)
= V (Ck ,hk)

Option 2: "Stochastic"

V (WEI(Ck ,hk),0)+ ε0

= V (Ck ,hk)+ εk
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Stochastic equivalent income

Consequences of Option 2: "Stochastic"

V (WEI(Ck ,hk),0)+ ε0 = V (Ck ,hk)+ εk

• WEI(Ck ,hk) is a random variable

• distribution will depend on whether or not we condition on the
actual choice

In this paper, we

• determine the (un)conditional distribution of the equivalent
income random variable

• empirically illustrate that stochastic EI 6= deterministic EI
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Stochastic equivalent income

Setting:
Discrete choice over

X = {(0,0),(w1,h1), . . . ,(wn,hn)}

with
Ui(Ck ,hk) = Vi(Ck ,hk)+ ε

i
k .

where the ε i
k are iid standard Gumbel distributed (evi) i.e.

G(x) = exp(−exp(−x))

Q: What is the (un)conditional distribution of WEI(Ck ,hk)?
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Distribution of stochastic EI in an arbitrary
bundle

Theorem (Unconditional distribution)
The stochastic equivalent income W i

EI evaluated in an arbitrary
bundle (C ,h) equals the income when not working C0 for h = 0.

For h = hk 6= 0, it is a random variable distributed as follows:

P
(
W i

EI(Ck ,hk)≤ y
)

= exp(Vi (y ,0))
exp(Vi (y ,0))+exp(Vi(Ck ,hk)) .
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Distribution of stochastic EI in an arbitrary
bundle

P
(
W i

EI(Ck ,hk)≤ y
)

= exp(Vi (y ,0))
exp(Vi (y ,0))+exp(Vi(Ck ,hk)) .

Interpretation:
probability that an individual would choose option (y ,0) over
(Ck ,hk) when the choice set consists of those two bundles.
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Distribution of stochastic EI in a chosen bundle

Theorem (Conditional distribution)
The stochastic equivalent income W i

EI evaluated in a chosen
bundle (C ,h) equals the income when not working C0 for h = 0.

For h = hk 6= 0, it is a random variable distributed as follows:

P
(
W i

EI(Ck ,hk)≤ y | k is chosen
)

=
0 if y < C0,

exp(Vi (y ,0))−exp(Vi (C0,0))

exp(Vi (y ,0))+
(

∑hj∈H\{0} exp(Vi (Cj ,hj))
) otherwise.
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Empirical illustration

Empirical illustration has two goals:
• how to compare individuals with each other if their welfare is a

random variable?

• how does the stochastic EI compare with the deterministic EI?

14



Empirical illustration

Empirical illustration has two goals:
• how to compare individuals with each other if their welfare is a

random variable?
• how does the stochastic EI compare with the deterministic EI?
Empirical results

14



Outline
Motivation

Theoretical results
Stochastic equivalent income in an arbitrary bundle
Stochastic equivalent income in a chosen bundle

Empirical illustration
Data
How to compare RVs?
Stochastic EI vs. deterministic EI

Conclusion



Data
Data for the empirical illustration:
• SILC 2015
• singles
• between 18 and 64, available for the labour market
• Self-employed individuals and employers excluded
• no extra adults available for the labour market are allowed

Model estimated on it:
• Preferences estimated as in Capéau et al. (2018)
• gender specific Box–Cox utility function
• marginal rates of substitution which depend on age, education,

region and the number of children
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Data
Table: Descriptive statistics SILC subsample

Description Female Male

Age (years) 43.0 41.5
Dependent children (%)
0 – 3 years 5.0 0.7
4 – 6 years 6.2 1.4
7 – 9 years 7.8 0.9

Experience (years) 16.6 18.8
Education (%)
Low 22.1 19.6
Middle 36.1 39.0
High 41.8 41.4

Residence (%)
Brussels 20.2 17.3
Flanders 45.4 48.3
Wallonia 34.4 34.4

Participation rate (%) 67.9 73.7
Hours worked (hours/week)
Unconditional 24.0 29.8
Conditional on working 35.3 40.4

Hourly wage (euro) 20.4 21.2
Disposable income (euro/month) 2123.1 2345.9

Number of observations 644 526

16



Outline
Motivation

Theoretical results
Stochastic equivalent income in an arbitrary bundle
Stochastic equivalent income in a chosen bundle

Empirical illustration
Data
How to compare RVs?
Stochastic EI vs. deterministic EI

Conclusion



Empirical illustration: how to compare RVs?

Figure: Cdf of stochastic equivalent income for some working
individuals
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Empirical illustration: how to compare RVs?

Figure: Cdf of stochastic equivalent income for some working
individuals compared to deterministic equivalent income (dashed lines)
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Stochastic EI vs. deterministic EI

Figure: Rank plot

dominating analysis RURO
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Conclusion

In this paper, we
• developed the concept of Stochastic EI
• derived the (un)conditional distribution of stochastic EI in

discrete choice context
• empirically illustrated the relevance of the concept by proving it

differs considerably from determinisitc EI
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Preference based welfare analysis with
unobserved heterogeneity

Thank you!
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Empirical illustration: how to compare RVs?

Figure: The number of stochastic dominances per individual
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Empirical illustration: how to compare RVs?

Figure: The number of stochastic dominances per individual split by
gender

F versus all M versus all F versus F M versus M
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Empirical illustration: how to compare RVs?

Figure: Rank plot
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Empirical illustration: how to compare RVs?

Figure: Rank plot by gender
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Stochastic EI vs. deterministic EI

Figure: The number of stochastic dominances per individual - females
vs all

all versus all M versus all F versus F M versus M
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Empirical illustration: how to compare RVs?

Figure: The number of stochastic dominances per individual - males vs
all

all versus all F versus all F versus F M versus M
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Empirical illustration: how to compare RVs?

Figure: The number of stochastic dominances per individual - females
vs females

all versus all F versus all M versus all M versus M
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Empirical illustration: how to compare RVs?

Figure: The number of stochastic dominances per individual - males vs
males

all versus all F versus all M versus all F versus F
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Stochastic EI vs. deterministic EI

Figure: Rank plot

dominated analysis
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Stochastic EI vs. deterministic EI

Figure: Rank plot stochastic versus observed consumption

dominated
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Stochastic EI vs. deterministic EI

Figure: Rank plot deterministic versus observed consumption

dominated
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Stochastic EI vs. deterministic EI

Figure: Rank plot by gender

dominated
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Stochastic EI vs. deterministic EI

Table: Rank differences stochastic vs. deterministic

stochastic deterministic
rank quintiles F M F M
(1,167] 128 38 88 78
(167,333] 116 50 97 69
(333,499] 104 62 98 68
(499,665] 74 92 89 77
(665,831] 29 137 79 87

dominated
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RURO: the idea

z1

z2

z3

z4

z5

z6
z7

z8

z9
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z11
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z14

z15

z16

z17

Z Ui(zn) =Vi
(
C(zn),h(zn)

)
+ε(zn)

dominated
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RURO: the idea
RURO, summary:
• individuals choose jobs, not only labour hours

• discrete choice, but
• idiosyncratic choice sets, which are draws from individual

specific random variables
• argument for Gumbel distributed random terms
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RURO, summary:
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Empirical illustration
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Distribution of EI in arbitrary bundle (RURO)
Theorem (Unconditional distribution - RURO)
The stochastic equivalent income W i

EI evaluated in an arbitrary
set of bundles B equals the income when not working C0 for
B = {0}.

For B 6= {0}, it is a random variable distributed as
follows:

P
(
W i

EI

(
B
)
≤ y
)

= exp(Vi (y ,0))
exp(Vi (y ,0))+exp(µ̃ i

W − µ̃ i
0)exp(Vi(B))

.

where exp(Vi(B)) =
∫
B gi(w ,h)exp(Vi(C(w ,h),h)) dw dh
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Distribution of EI in chosen bundle (RURO)
Theorem (Conditional distribution - RURO)
The stochastic equivalent income W i

EI evaluated in a chosen
bundle in a set B equals the income when not working C0 for
B = {0}.

For B 6= {0}, it is a random variable distributed as
follows:

P
(
W i

EI

(
B
)
≤ y | a bundle in B is chosen

)
={

0 if y < C0,
exp(Vi (y ,0))−exp(Vi (C0,0))

exp(Vi (y ,0))+exp(µ̃ i
W−µ̃ i

0)exp(Vi (X)) otherwise.

where exp(Vi(X )) =
∫

X gi(w ,h)exp(Vi(C(w ,h),h)) dw dh
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