KULEUVEN

Preference based welfare analysis with unobserved heterogeneity

 Bart Capéau, André Decoster, Liebrecht De Sadeleer, Sebastiaan MaesKU Leuven
February 12, 2020

Motivation

Preferences have two functions:

- explaining behaviour: positive analysis

Motivation

Preferences have two functions:

- explaining behaviour: positive analysis
- determining preference based welfare: normative analysis

Motivation

Preferences have two functions:

- explaining behaviour: positive analysis
- determining preference based welfare: normative analysis

Motivation

Preferences have two functions:

- explaining behaviour: positive analysis
- determining preference based welfare: normative analysis

But 'plug and play' is more complicated than it seems...

Motivation

discrete choice over $X=\left\{x_{1}, \ldots, x_{n}\right\}$

$$
U\left(x_{k}\right)=V\left(x_{k}\right)+\varepsilon_{k}
$$

Motivation

discrete choice over $X=\left\{x_{1}, \ldots, x_{n}\right\}$

$$
U\left(x_{k}\right)=V\left(x_{k}\right)+\varepsilon_{k}
$$

Should ε be incorporated in a welfare measure?

Motivation

Welfare differences: include ε in calculation CV

- Dagsvik - Karlström (2005)

Motivation

Welfare differences: include ε in calculation CV

- Dagsvik - Karlström (2005)
- de Palma - Kilani (2011)

Motivation

Welfare differences: include ε in calculation CV

- Dagsvik - Karlström (2005)
- de Palma - Kilani (2011)

Motivation

Welfare differences: include ε in calculation CV

- Dagsvik - Karlström (2005)
- de Palma - Kilani (2011)

Welfare levels:

Motivation

Welfare differences: include ε in calculation CV

- Dagsvik - Karlström (2005)
- de Palma - Kilani (2011)

Welfare levels:

- Decoster - Haan (2014): only deterministic part

Motivation

Welfare differences: include ε in calculation CV

- Dagsvik - Karlström (2005)
- de Palma - Kilani (2011)

Welfare levels:

- Decoster - Haan (2014): only deterministic part
- Carpantier - Sapata (2016): conditional means of the random terms

Motivation

Welfare differences: include ε in calculation CV

- Dagsvik - Karlström (2005)
- de Palma - Kilani (2011)

Welfare levels:

- Decoster - Haan (2014): only deterministic part
- Carpantier - Sapata (2016): conditional means of the random terms

Motivation

Welfare differences: include ε in calculation CV

- Dagsvik - Karlström (2005)
- de Palma - Kilani (2011)

Welfare levels:

- Decoster - Haan (2014): only deterministic part
- Carpantier - Sapata (2016): conditional means of the random terms

Our contribution: include ε to determine distribution of welfare levels.

Outline

Motivation

Theoretical results
Stochastic equivalent income in an arbitrary bundle Stochastic equivalent income in a chosen bundle

Empirical illustration
Data
How to compare RVs?
Stochastic El vs. deterministic EI

Conclusion

Outline

Theoretical results
Stochastic equivalent income in an arbitrary bundle Stochastic equivalent income in a chosen bundle

Labour context

Equivalent income in the labour context:

$$
\begin{gathered}
X=\left\{\left(w_{0}=0, h_{0}=0\right),\left(w_{1}, h_{1}\right), \ldots,\left(w_{n}, h_{n}\right)\right\} \\
U\left(C_{k}, h_{k}\right)=V\left(C_{k}, h_{k}\right)+\varepsilon_{k}
\end{gathered}
$$

Labour context

Equivalent income in the labour context:

$$
\begin{gathered}
X=\left\{\left(w_{0}=0, h_{0}=0\right),\left(w_{1}, h_{1}\right), \ldots,\left(w_{n}, h_{n}\right)\right\} \\
U\left(C_{k}, h_{k}\right)=V\left(C_{k}, h_{k}\right)+\varepsilon_{k}
\end{gathered}
$$

Welfare measure: equivalent income

Equivalent income

Equivalent income:

Equivalent income: deterministic and

 stochasticEquivalent income in the labour context.

$$
\begin{gathered}
X=\left\{\left(w_{0}=0, h_{0}=0\right),\left(w_{1}, h_{1}\right), \ldots,\left(w_{n}, h_{n}\right)\right\} \\
U\left(C_{k}, h_{k}\right)=V\left(C_{k}, h_{k}\right)+\varepsilon_{k}
\end{gathered}
$$

Option 1: 'Deterministic"
$V\left(W_{E I}\left(C_{k}, h_{k}\right), 0\right)$

$$
=V\left(C_{k}, h_{k}\right)
$$

Equivalent income: deterministic and

 stochasticEquivalent income in the labour context.

$$
\begin{gathered}
X=\left\{\left(w_{0}=0, h_{0}=0\right),\left(w_{1}, h_{1}\right), \ldots,\left(w_{n}, h_{n}\right)\right\} \\
U\left(C_{k}, h_{k}\right)=V\left(C_{k}, h_{k}\right)+\varepsilon_{k}
\end{gathered}
$$

Option 1: 'Deterministic"
$V\left(W_{E I}\left(C_{k}, h_{k}\right), 0\right)$

$$
=V\left(C_{k}, h_{k}\right)
$$

Option 2: 'Stochastic"

$$
\begin{aligned}
& V\left(W_{E I}\left(C_{k}, h_{k}\right), 0\right)+\varepsilon_{0} \\
& \quad=V\left(C_{k}, h_{k}\right)+\varepsilon_{k}
\end{aligned}
$$

Stochastic equivalent income

Consequences of Option 2: "Stochastic"

$$
V\left(W_{E I}\left(C_{k}, h_{k}\right), 0\right)+\varepsilon_{0}=V\left(C_{k}, h_{k}\right)+\varepsilon_{k}
$$

- $W_{E I}\left(C_{k}, h_{k}\right)$ is a random variable

Stochastic equivalent income

Consequences of Option 2: "Stochastic"

$$
V\left(W_{E I}\left(C_{k}, h_{k}\right), 0\right)+\varepsilon_{0}=V\left(C_{k}, h_{k}\right)+\varepsilon_{k}
$$

- $W_{E I}\left(C_{k}, h_{k}\right)$ is a random variable
- distribution will depend on whether or not we condition on the actual choice

Stochastic equivalent income

Consequences of Option 2: "Stochastic"

$$
V\left(W_{E I}\left(C_{k}, h_{k}\right), 0\right)+\varepsilon_{0}=V\left(C_{k}, h_{k}\right)+\varepsilon_{k}
$$

- $W_{E I}\left(C_{k}, h_{k}\right)$ is a random variable
- distribution will depend on whether or not we condition on the actual choice

Stochastic equivalent income

Consequences of Option 2: "Stochastic"

$$
V\left(W_{E I}\left(C_{k}, h_{k}\right), 0\right)+\varepsilon_{0}=V\left(C_{k}, h_{k}\right)+\varepsilon_{k}
$$

- $W_{E I}\left(C_{k}, h_{k}\right)$ is a random variable
- distribution will depend on whether or not we condition on the actual choice

In this paper, we

- determine the (un)conditional distribution of the equivalent income random variable

Stochastic equivalent income

Consequences of Option 2: "Stochastic"

$$
V\left(W_{E I}\left(C_{k}, h_{k}\right), 0\right)+\varepsilon_{0}=V\left(C_{k}, h_{k}\right)+\varepsilon_{k}
$$

- $W_{E I}\left(C_{k}, h_{k}\right)$ is a random variable
- distribution will depend on whether or not we condition on the actual choice

In this paper, we

- determine the (un)conditional distribution of the equivalent income random variable
- empirically illustrate that stochastic EI \neq deterministic EI

Stochastic equivalent income

Setting:
Discrete choice over

$$
X=\left\{(0,0),\left(w_{1}, h_{1}\right), \ldots,\left(w_{n}, h_{n}\right)\right\}
$$

with

$$
U_{i}\left(C_{k}, h_{k}\right)=V_{i}\left(C_{k}, h_{k}\right)+\varepsilon_{k}^{i} .
$$

Stochastic equivalent income

Setting:
Discrete choice over

$$
X=\left\{(0,0),\left(w_{1}, h_{1}\right), \ldots,\left(w_{n}, h_{n}\right)\right\}
$$

with

$$
U_{i}\left(C_{k}, h_{k}\right)=V_{i}\left(C_{k}, h_{k}\right)+\varepsilon_{k}^{i} .
$$

where the ε_{k}^{i} are iid standard Gumbel distributed (EVI) i.e.

$$
G(x)=\exp (-\exp (-x))
$$

Stochastic equivalent income

Setting:
Discrete choice over

$$
X=\left\{(0,0),\left(w_{1}, h_{1}\right), \ldots,\left(w_{n}, h_{n}\right)\right\}
$$

with

$$
U_{i}\left(C_{k}, h_{k}\right)=V_{i}\left(C_{k}, h_{k}\right)+\varepsilon_{k}^{i} .
$$

where the ε_{k}^{i} are iid standard Gumbel distributed (EVI) i.e.

$$
G(x)=\exp (-\exp (-x))
$$

Q: What is the (un)conditional distribution of $W_{E I}\left(C_{k}, h_{k}\right)$?

Outline

Theoretical results
Stochastic equivalent income in an arbitrary bundle

Empirical illustration
Data
How to compare RVs?
Stochastic El vs. deterministic El

Distribution of stochastic El in an arbitrary bundle

Theorem (Unconditional distribution)

The stochastic equivalent income $W_{E I}^{i}$ evaluated in an arbitrary bundle (C, h) equals the income when not working C_{0} for $h=0$.

Distribution of stochastic El in an arbitrary bundle

Theorem (Unconditional distribution)

The stochastic equivalent income $W_{E I}^{i}$ evaluated in an arbitrary bundle (C, h) equals the income when not working C_{0} for $h=0$. For $h=h_{k} \neq 0$, it is a random variable distributed as follows:

$$
P\left(W_{E /}^{i}\left(C_{k}, h_{k}\right) \leq y\right)=\frac{\exp \left(V_{i}(y, 0)\right)}{\exp \left(V_{i}(y, 0)\right)+\exp \left(V_{i}\left(C_{k}, h_{k}\right)\right)} .
$$

Distribution of stochastic El in an arbitrary bundle

$$
P\left(W_{E /}^{i}\left(C_{k}, h_{k}\right) \leq y\right)=\frac{\exp \left(V_{i}(y, 0)\right)}{\exp \left(V_{i}(y, 0)\right)+\exp \left(V_{i}\left(C_{k}, h_{k}\right)\right)} .
$$

Interpretation:
probability that an individual would choose option $(y, 0)$ over $\left(C_{k}, h_{k}\right)$ when the choice set consists of those two bundles.

Outline

Theoretical results
Stochastic equivalent income in a chosen bundle

Distribution of stochastic El in a chosen bundle

Theorem (Conditional distribution)

The stochastic equivalent income $W_{E I}^{i}$ evaluated in a chosen bundle (C, h) equals the income when not working C_{0} for $h=0$.

Distribution of stochastic El in a chosen bundle

Theorem (Conditional distribution)

The stochastic equivalent income $W_{E I}^{i}$ evaluated in a chosen bundle (C, h) equals the income when not working C_{0} for $h=0$. For $h=h_{k} \neq 0$, it is a random variable distributed as follows:

$$
\begin{aligned}
& P\left(W_{E /}^{i}\left(C_{k}, h_{k}\right) \leq y \mid k \text { is chosen }\right)= \\
& \begin{cases}0 & \text { if } y<C_{0}, \\
\frac{\exp \left(V_{i}(y, 0)\right)-\exp \left(V_{i}\left(C_{0}, 0\right)\right)}{\exp \left(V_{i}(y, 0)\right)+\left(\Sigma_{h_{j} \in H\{\{0\}} \exp \left(V_{i}\left(C_{j}, h_{j}\right)\right)\right)} & \text { otherwise. }\end{cases}
\end{aligned}
$$

Distribution of stochastic El in a chosen bundle

$$
P\left(W_{E l}^{i}\left(C_{k}, h_{k}\right) \leq y \mid k \text { is chosen }\right)=
$$

$$
\begin{cases}0 & \text { if } y<C_{0}, \\ \frac{\exp \left(V_{i}(y, 0)\right)-\exp \left(V_{i}\left(C_{0}, 0\right)\right)}{\exp \left(V_{i}(y, 0)\right)+\left(\sum_{h_{j} \in H\{\{0\}} \exp \left(V_{i}\left(C_{j}, h_{j}\right)\right)\right)} & \text { otherwise. }\end{cases}
$$

Distribution of stochastic El in a chosen bundle

$$
\begin{aligned}
& P\left(W_{E /}^{i}\left(C_{k}, h_{k}\right) \leq y \mid k \text { is chosen }\right)= \\
& \qquad \begin{cases}0 & \text { if } y<C_{0}, \\
\frac{\exp \left(V_{i}(y, 0)\right)-\exp \left(V_{i}\left(C_{0}, 0\right)\right)}{\exp \left(V_{i}(y, 0)\right)+\left(\Sigma_{h_{j} \in H}(\{00)\right.}, & \text { oxp } \left.\left(V_{i}\left(C_{j}, h_{j}\right)\right)\right)\end{cases}
\end{aligned}
$$

Note (1):

$$
\begin{aligned}
& P\left(W_{E I}^{i}\left(C_{k}, h_{k}\right) \leq y \mid k \text { is chosen }\right)= \\
& \qquad P\left(W_{E I}^{i}\left(C_{j}, h_{j}\right) \leq y \mid j \text { is chosen }\right)
\end{aligned}
$$

Distribution of stochastic El in a chosen bundle

$$
\begin{aligned}
& P\left(W_{E /}^{i}\left(C_{k}, h_{k}\right) \leq y \mid k \text { is chosen }\right)= \\
& \begin{cases}0 & \text { if } y<C_{0}, \\
\frac{\exp \left(V_{i}\left(y_{0}, 0\right)\right)-\exp \left(V_{i}\left(C_{0}, 0\right)\right)}{\exp \left(V_{i}\left(y_{0}, 0\right)\right)+\left(\sum_{h_{j} \in H}=(0) \exp \left(V_{i}\left(C_{j}, h_{j}\right)\right)\right)} & \text { otherwise. }\end{cases}
\end{aligned}
$$

Note (1):

$$
P\left(W_{E l}^{i}\left(C_{k}, h_{k}\right) \leq y \mid k \text { is chosen }\right)=
$$

$$
P\left(W_{E l}^{i}\left(C_{j}, h_{j}\right) \leq y \mid j \text { is chosen }\right)
$$

\Rightarrow only information on (the valuation of) the choice set is needed

Distribution of stochastic El in a chosen bundle

$$
\begin{aligned}
& P\left(W_{E /}^{i}\left(C_{k}, h_{k}\right) \leq y \mid k \text { is chosen }\right)= \\
& \begin{cases}0 & \text { if } y<C_{0}, \\
\frac{\exp \left(V_{i}(y, 0)\right)-\exp \left(V_{i}\left(C_{0}, 0\right)\right)}{\exp \left(V_{i}(y, 0)\right)+\left(\sum_{b_{j} \in H}(0,0) \in \exp \left(V_{i}\left(C_{j}, h_{j}\right)\right)\right)} & \text { otherwise. }\end{cases}
\end{aligned}
$$

Note (2):

$$
P\left(W_{E l}^{i}\left(C_{k}, h_{k}\right) \leq C_{0} \mid k \text { is chosen }\right)=0
$$

Distribution of stochastic El in a chosen bundle

$$
\begin{aligned}
& P\left(W_{E /}^{i}\left(C_{k}, h_{k}\right) \leq y \mid k \text { is chosen }\right)= \\
& \begin{cases}0 & \text { if } y<C_{0}, \\
\frac{\exp \left(V_{i}(y, 0)\right)-\exp \left(V_{i}\left(C_{0}, 0\right)\right)}{\exp \left(V_{i}(y, 0)\right)+\left(\sum_{b_{j} \in H}(0,0) \in \exp \left(V_{i}\left(C_{j}, h_{j}\right)\right)\right)} & \text { otherwise. }\end{cases}
\end{aligned}
$$

Note (2):

$$
P\left(W_{E l}^{i}\left(C_{k}, h_{k}\right) \leq C_{0} \mid k \text { is chosen }\right)=0
$$

If $y<C_{0}: V_{i}\left(C_{0}, 0\right)+\varepsilon_{0}^{i}>V_{i}(y, 0)+\varepsilon_{0}^{i}$

Distribution of stochastic El in a chosen bundle

$$
\begin{aligned}
& P\left(W_{E /}^{i}\left(C_{k}, h_{k}\right) \leq y \mid k \text { is chosen }\right)= \\
& \begin{cases}0 & \text { if } y<C_{0}, \\
\left.\frac{\exp \left(V_{i}\left(y_{0}, 0\right)\right)-\exp \left(V_{i}\left(C_{0}, 0\right)\right)}{\exp \left(V_{i}\left(y_{0}, 0\right)\right)+\left(\sum_{h_{j} \in H} \in H ; 0\right)} \mathbf{e x p}\left(V_{i}\left(C_{j}, h_{j}\right)\right)\right) & \text { otherwise. }\end{cases}
\end{aligned}
$$

Note (2):

$$
P\left(W_{E l}^{i}\left(C_{k}, h_{k}\right) \leq C_{0} \mid k \text { is chosen }\right)=0
$$

If $y<C_{0}: V_{i}\left(C_{0}, 0\right)+\varepsilon_{0}^{i}>V_{i}(y, 0)+\varepsilon_{0}^{j}=V_{i}\left(C_{k}, h_{k}\right)+\varepsilon_{k}^{i}$

Outline

Theoretical results

Empirical illustration
 Data

How to compare RVs?
Stochastic El vs. deterministic El

Empirical illustration

Empirical illustration has two goals:

- how to compare individuals with each other if their welfare is a random variable?

Empirical illustration

Empirical illustration has two goals:

- how to compare individuals with each other if their welfare is a random variable?
- how does the stochastic El compare with the deterministic EI?

Empirical results

Outline

Motivation
 Theoretical results Stnchastir erluiva ent income in an arbitrary bundle Stochastic equivalent income in a chosen bundle

Empirical illustration

Data

How to compare RVs?
Stochastic El vs. deterministic El

Data

Data for the empirical illustration:

- SILC 2015
- singles
- between 18 and 64, available for the labour market
- Self-employed individuals and employers excluded
- no extra adults available for the labour market are allowed

Data

Data for the empirical illustration:

- SILC 2015
- singles
- between 18 and 64, available for the labour market
- Self-employed individuals and employers excluded
- no extra adults available for the labour market are allowed

Model estimated on it:

- Preferences estimated as in Capéau et al. (2018)
- gender specific Box-Cox utility function
- marginal rates of substitution which depend on age, education, region and the number of children

Table: Descriptive statistics SILC subsample

Description	Female	Male
Age (years)	43.0	41.5
Dependent children (\%) $0-3$ years	5.0	0.7
$4-6$ years	6.2	1.4
$7-9$ years	7.8	0.9
Experience (years)	16.6	18.8
Education (\%)		
\quad Low	22.1	19.6
Middle	36.1	39.0
High	41.8	41.4
Residence (\%)	20.2	17.3
\quad Brussels	45.4	48.3
Flanders	34.4	34.4
\quad Wallonia	67.9	73.7
Participation rate (\%)		
Hours worked (hours/week)	24.0	29.8
\quad Unconditional	35.3	40.4
Conditional on working	20.4	21.2
Hourly wage (euro)	2123.1	2345.9
Disposable income (euro/month)	644	526
Number of observations		

Outline

Motivation
 Theoretical results Stnchastir eruiva ent income in an arbitrary bundle Stochastic equivalent income in a chosen bundle

Empirical illustration

How to compare RVs?

Stochastic El vs. deterministic El

Empirical illustration: how to compare RVs?

Figure: Cdf of stochastic equivalent income for some working individuals

Empirical illustration: how to compare RVs?

Figure: Cdf of stochastic equivalent income for some working individuals compared to deterministic equivalent income (dashed lines)

Outline

Empirical illustration

Stochastic El vs. deterministic El

Stochastic El vs. deterministic El

Figure: Rank plot

Outline

Motivation

Theoretical results

Empirical illustration

Conclusion

Conclusion

In this paper, we

- developed the concept of Stochastic El
- derived the (un)conditional distribution of stochastic El in discrete choice context
- empirically illustrated the relevance of the concept by proving it differs considerably from determinisitc El

Preference based welfare analysis with unobserved heterogeneity

Thank you!

Empirical illustration: how to compare RVs?

Figure: The number of stochastic dominances per individual

Empirical illustration: how to compare RVs?

Figure: The number of stochastic dominances per individual split by gender

Empirical illustration: how to compare RVs?

Figure: Rank plot

Empirical illustration: how to compare RVs?

Figure: Rank plot by gender

Stochastic El vs. deterministic El

Figure: The number of stochastic dominances per individual - females vs all

Empirical illustration: how to compare RVs?

Figure: The number of stochastic dominances per individual - males vs all

Empirical illustration: how to compare RVs?

Figure: The number of stochastic dominances per individual - females vs females

Empirical illustration: how to compare RVs?

Figure: The number of stochastic dominances per individual - males vs males

Stochastic El vs. deterministic El

Figure: Rank plot

Stochastic El vs. deterministic El

Figure: Rank plot stochastic versus observed consumption

Stochastic El vs. deterministic El

Figure: Rank plot deterministic versus observed consumption

Stochastic El vs. deterministic El

Figure: Rank plot by gender

Stochastic El vs. deterministic El

Table: Rank differences stochastic vs. deterministic

	stochastic		deterministic	
rank quintiles	F	M	F	M
$(1,167]$	128	38	88	78
$(167,333]$	116	50	97	69
$(333,499]$	104	62	98	68
$(499,665]$	74	92	89	77
$(665,831]$	29	137	79	87

RURO: the idea

RURO: the idea

RURO, summary:

- individuals choose jobs, not only labour hours

RURO: the idea

RURO, summary:

- individuals choose jobs, not only labour hours
- discrete choice, but

RURO: the idea

RURO, summary:

- individuals choose jobs, not only labour hours
- discrete choice, but
- idiosyncratic choice sets, which are draws from individual specific random variables

RURO: the idea

RURO, summary:

- individuals choose jobs, not only labour hours
- discrete choice, but
- idiosyncratic choice sets, which are draws from individual specific random variables
- argument for Gumbel distributed random terms

Empirical ilustration

Distribution of El in arbitrary bundle (RURO)

 Theorem (Unconditional distribution - RURO) The stochastic equivalent income $W_{E I}^{i}$ evaluated in an arbitrary set of bundles \mathscr{B} equals the income when not working C_{0} for $\mathscr{B}=\{0\}$.
Distribution of El in arbitrary bundle (RURO)

Theorem (Unconditional distribution - RURO)

The stochastic equivalent income $W_{E I}^{i}$ evaluated in an arbitrary set of bundles \mathscr{B} equals the income when not working C_{0} for $\mathscr{B}=\{0\}$. For $\mathscr{B} \neq\{0\}$, it is a random variable distributed as follows:

$$
P\left(W_{E I}^{i}(\mathscr{B}) \leq y\right)=\frac{\exp \left(V_{i}(y, 0)\right)}{\exp \left(V_{i}(y, 0)\right)+\exp \left(\tilde{\mu}_{W}^{i}-\tilde{\mu}_{0}^{i}\right) \exp \left(V_{i}(\mathscr{B})\right)}
$$

where $\exp \left(V_{i}(\mathscr{B})\right)=\int_{\mathscr{B}} g_{i}(w, h) \exp \left(V_{i}(C(w, h), h)\right) d w d h$

Distribution of El in chosen bundle (RURO)

Theorem (Conditional distribution - RURO)

The stochastic equivalent income $W_{E I}^{i}$ evaluated in a chosen bundle in a set \mathscr{B} equals the income when not working C_{0} for $\mathscr{B}=\{0\}$.

Distribution of El in chosen bundle (RURO)

Theorem (Conditional distribution - RURO)

The stochastic equivalent income $W_{E I}^{i}$ evaluated in a chosen bundle in a set \mathscr{B} equals the income when not working C_{0} for $\mathscr{B}=\{0\}$. For $\mathscr{B} \neq\{0\}$, it is a random variable distributed as follows:

$$
\begin{aligned}
P\left(W_{E I}^{i}(\mathscr{B}) \leq\right. & y \mid \text { a bundle in } \mathscr{B} \text { is chosen })= \\
& \begin{cases}0 & \text { if } y<C_{0}, \\
\frac{\exp \left(V_{i}(y, 0)\right)-\exp \left(V_{i}\left(C_{0}, 0\right)\right)}{\exp \left(V_{i}(y, 0)\right)+\exp \left(\tilde{\mu}_{W}^{i}-\tilde{\mu}_{0}^{i}\right) \exp \left(V_{i}(X)\right)} & \text { otherwise. } .\end{cases}
\end{aligned}
$$

where $\exp \left(V_{i}(X)\right)=\int_{X} g_{i}(w, h) \exp \left(V_{i}(C(w, h), h)\right) d w d h$

