KU LEUVEN

Preference based welfare analysis with unobserved heterogeneity

Bart Capéau, André Decoster, Liebrecht De Sadeleer, Sebastiaan Maes ^{KU Leuven} February 12, 2020

Preferences have two functions:

explaining behaviour: positive analysis

Preferences have two functions:

- explaining behaviour: positive analysis
- determining preference based welfare: normative analysis

Preferences have two functions:

- explaining behaviour: positive analysis
- determining preference based welfare: normative analysis

Preferences have two functions:

- explaining behaviour: positive analysis
- determining preference based welfare: normative analysis

But 'plug and play' is more complicated than it seems...

discrete choice over
$$X = \{x_1, \ldots, x_n\}$$

$$U(x_k) = V(x_k) + \varepsilon_k$$

KU LEUVEN

discrete choice over
$$X = \{x_1, \ldots, x_n\}$$

$$U(x_k) = V(x_k) + \varepsilon_k$$

Should ε be incorporated in a welfare measure?

KU LEUVEN

Welfare differences: include ε in calculation CV

Dagsvik - Karlström (2005)

Welfare *differences*: include ε in calculation CV

- Dagsvik Karlström (2005)
- de Palma Kilani (2011)

Welfare *differences*: include ε in calculation CV

- Dagsvik Karlström (2005)
- de Palma Kilani (2011)

Welfare *differences*: include ε in calculation CV

- Dagsvik Karlström (2005)
- de Palma Kilani (2011)

Welfare *levels*:

Welfare *differences*: include ε in calculation CV

- Dagsvik Karlström (2005)
- de Palma Kilani (2011)

Welfare *levels*:

• Decoster - Haan (2014): only deterministic part

Welfare *differences*: include ε in calculation CV

- Dagsvik Karlström (2005)
- de Palma Kilani (2011)

Welfare *levels*:

- Decoster Haan (2014): only deterministic part
- Carpantier Sapata (2016): conditional means of the random terms

Welfare *differences*: include ε in calculation CV

- Dagsvik Karlström (2005)
- de Palma Kilani (2011)

Welfare *levels*:

- Decoster Haan (2014): only deterministic part
- Carpantier Sapata (2016): conditional means of the random terms

Welfare *differences*: include ε in calculation CV

- Dagsvik Karlström (2005)
- de Palma Kilani (2011)

Welfare *levels*:

- Decoster Haan (2014): only deterministic part
- Carpantier Sapata (2016): conditional means of the random terms

Our contribution: include $\boldsymbol{\varepsilon}$ to determine distribution of welfare levels.

Outline

Motivation

Theoretical results

Stochastic equivalent income in an arbitrary bundle Stochastic equivalent income in a chosen bundle

Empirical illustration

Data How to compare RVs? Stochastic EI vs. deterministic EI

Conclusion

Outline

Motivation

Theoretical results

Stochastic equivalent income in an arbitrary bundle Stochastic equivalent income in a chosen bundle

Empirical illustration

Conclusion

Labour context

Equivalent income in the labour context:

 $X = \{(w_0 = 0, h_0 = 0), (w_1, h_1), \dots, (w_n, h_n)\}$ $U(C_k, h_k) = V(C_k, h_k) + \varepsilon_k$

KU LEUVEN

Labour context

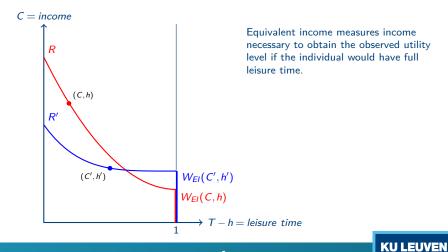
Equivalent income in the labour context:

 $X = \{(w_0 = 0, h_0 = 0), (w_1, h_1), \dots, (w_n, h_n)\}$ $U(C_k, h_k) = V(C_k, h_k) + \varepsilon_k$

Welfare measure: equivalent income

Equivalent income

Equivalent income:



Equivalent income: deterministic and stochastic

Equivalent income in the labour context.

$$X = \{(w_0 = 0, h_0 = 0), (w_1, h_1), \dots, (w_n, h_n)\}$$

$$U(C_k,h_k)=V(C_k,h_k)+\varepsilon_k$$

Option 1: "Deterministic"

 $V(W_{El}(C_k,h_k),0) = V(C_k,h_k)$

KU LEUVEN

Equivalent income: deterministic and stochastic

Equivalent income in the labour context.

$$X = \{(w_0 = 0, h_0 = 0), (w_1, h_1), \dots, (w_n, h_n)\}$$

$$U(C_k,h_k)=V(C_k,h_k)+\varepsilon_k$$

Option 1: "Deterministic"

Option 2: "Stochastic"

 $V(W_{El}(C_k, h_k), 0) = V(C_k, h_k)$

 $V(W_{El}(C_k, h_k), 0) + \varepsilon_0$ = $V(C_k, h_k) + \varepsilon_k$

Consequences of Option 2: "Stochastic"

 $V(W_{El}(C_k,h_k),0)+\varepsilon_0=V(C_k,h_k)+\varepsilon_k$

• $W_{El}(C_k, h_k)$ is a random variable

Consequences of Option 2: "Stochastic"

 $V(W_{El}(C_k,h_k),0)+\varepsilon_0=V(C_k,h_k)+\varepsilon_k$

- $W_{El}(C_k, h_k)$ is a random variable
- distribution will depend on whether or not we condition on the actual choice

Consequences of Option 2: "Stochastic"

 $V(W_{El}(C_k,h_k),0)+\varepsilon_0=V(C_k,h_k)+\varepsilon_k$

- $W_{El}(C_k, h_k)$ is a random variable
- distribution will depend on whether or not we condition on the actual choice

Consequences of Option 2: "Stochastic"

 $V(W_{El}(C_k,h_k),0)+\varepsilon_0=V(C_k,h_k)+\varepsilon_k$

- $W_{El}(C_k, h_k)$ is a random variable
- distribution will depend on whether or not we condition on the actual choice

In this paper, we

 determine the (un)conditional distribution of the equivalent income random variable

Consequences of Option 2: "Stochastic"

 $V(W_{El}(C_k,h_k),0)+\varepsilon_0=V(C_k,h_k)+\varepsilon_k$

- $W_{El}(C_k, h_k)$ is a random variable
- distribution will depend on whether or not we condition on the actual choice

In this paper, we

- determine the (un)conditional distribution of the equivalent income random variable
- empirically illustrate that stochastic EI \neq deterministic EI

KU LEUVEN

Setting: Discrete choice over

$$X = \{(0,0), (w_1, h_1), \dots, (w_n, h_n)\}$$

with

$$U_i(C_k,h_k)=V_i(C_k,h_k)+\varepsilon_k^i.$$

KU LEUVEN

Setting: Discrete choice over

$$X = \{(0,0), (w_1, h_1), \dots, (w_n, h_n)\}$$

with

$$U_i(C_k,h_k)=V_i(C_k,h_k)+\varepsilon_k^i.$$

where the \mathcal{E}_{k}^{i} are iid standard Gumbel distributed (EVI) i.e.

$$G(x) = \exp\left(-\exp\left(-x\right)\right)$$

Setting: Discrete choice over

$$X = \{(0,0), (w_1, h_1), \dots, (w_n, h_n)\}$$

with

$$U_i(C_k,h_k)=V_i(C_k,h_k)+\varepsilon_k^i.$$

where the ε_k^i are iid standard Gumbel distributed (EVI) i.e.

$$G(x) = \exp\left(-\exp\left(-x\right)\right)$$

Q: What is the (un)conditional distribution of $W_{El}(C_k, h_k)$?

Outline

Motivation

Theoretical results Stochastic equivalent income in an arbitrary bundle Stochastic equivalent income in a chosen bundle

Empirical illustration

- Data
- How to compare RVs?
- Stochastic El vs. deterministic El

Conclusion

Distribution of stochastic El in an arbitrary bundle

Theorem (Unconditional distribution)

The stochastic equivalent income W_{EI}^i evaluated in an arbitrary bundle (C, h) equals the income when not working C_0 for h = 0.

Distribution of stochastic El in an arbitrary bundle

Theorem (Unconditional distribution)

The stochastic equivalent income W_{EI}^i evaluated in an arbitrary bundle (C, h) equals the income when not working C_0 for h = 0. For $h = h_k \neq 0$, it is a random variable distributed as follows:

$$P\left(W_{El}^{i}(C_{k},h_{k}) \leq y\right) = \frac{\exp\left(V_{i}(y,0)\right)}{\exp\left(V_{i}(y,0)\right) + \exp\left(V_{i}(C_{k},h_{k})\right)}.$$

Distribution of stochastic El in an arbitrary bundle

$$P\left(W_{EI}^{i}(C_{k},h_{k})\leq y\right)=\frac{\exp\left(V_{i}(y,0)\right)}{\exp\left(V_{i}(y,0)\right)+\exp\left(V_{i}(C_{k},h_{k})\right)}.$$

Interpretation:

probability that an individual would choose option (y, 0) over (C_k, h_k) when the choice set consists of those two bundles.

Outline

Motivation

Theoretical results

Stochastic equivalent income in an arbitrary bundle Stochastic equivalent income in a chosen bundle

Empirical illustration

- Data
- How to compare RVs?
- Stochastic El vs. deterministic El

Conclusion

Distribution of stochastic El in a chosen bundle

Theorem (Conditional distribution)

The stochastic equivalent income W_{EI}^i evaluated in a chosen bundle (C, h) equals the income when not working C_0 for h = 0.

Theorem (Conditional distribution)

The stochastic equivalent income W_{EI}^i evaluated in a chosen bundle (C, h) equals the income when not working C_0 for h = 0. For $h = h_k \neq 0$, it is a random variable distributed as follows:

$$P\Big(W_{EI}^{i}(C_{k},h_{k}) \leq y \mid k \text{ is chosen}\Big) = \begin{cases} 0 & \text{if } y < C_{0}, \\ \frac{\exp(V_{i}(y,0)) - \exp(V_{i}(C_{0},0))}{\exp(V_{i}(y,0)) + \left(\sum_{h_{j} \in H \setminus \{0\}} \exp(V_{i}(C_{j},h_{j}))\right)} & \text{otherwise.} \end{cases}$$

$$P\Big(W_{EI}^{i}(C_{k},h_{k}) \leq y \mid k \text{ is chosen}\Big) = \begin{cases} 0 & \text{if } y < C_{0}, \\ \frac{\exp(V_{i}(y,0)) - \exp(V_{i}(C_{0},0))}{\exp(V_{i}(y,0)) + \left(\sum_{h_{j} \in H \setminus \{0\}} \exp(V_{i}(C_{j},h_{j}))\right)} & \text{otherwise.} \end{cases}$$

$$P\Big(W_{EI}^{i}(C_{k},h_{k}) \leq y \mid k \text{ is chosen}\Big) = \begin{cases} 0 & \text{if } y < C_{0}, \\ \frac{\exp(V_{i}(y,0)) - \exp(V_{i}(C_{0},0))}{\exp(V_{i}(y,0)) + \left(\sum_{h_{j} \in H \setminus \{0\}} \exp(V_{i}(C_{j},h_{j}))\right)} & \text{otherwise.} \end{cases}$$

Note (1):

 $P(W_{El}^{i}(C_{k},h_{k}) \leq y \mid k \text{ is chosen }) = P(W_{El}^{i}(C_{j},h_{j}) \leq y \mid j \text{ is chosen }).$

$$P\Big(W_{EI}^{i}(C_{k},h_{k}) \leq y \mid k \text{ is chosen}\Big) = \begin{cases} 0 & \text{if } y < C_{0}, \\ \frac{\exp(V_{i}(y,0)) - \exp(V_{i}(C_{0},0))}{\exp(V_{i}(y,0)) + \left(\sum_{h_{j} \in H \setminus \{0\}} \exp(V_{i}(C_{j},h_{j}))\right)} & \text{otherwise.} \end{cases}$$

Note (1):

 $P\left(W_{El}^{i}(C_{k},h_{k}) \leq y \mid k \text{ is chosen }\right) = P\left(W_{El}^{i}(C_{j},h_{j}) \leq y \mid j \text{ is chosen }\right).$

 \Rightarrow only information on (the valuation of) the choice set is needed

$$P\Big(W_{EI}^{i}(C_{k},h_{k}) \leq y \mid k \text{ is chosen}\Big) = \begin{cases} 0 & \text{if } y < C_{0}, \\ \frac{\exp(V_{i}(y,0)) - \exp(V_{i}(C_{0},0))}{\exp(V_{i}(y,0)) + \left(\sum_{h_{j} \in H \setminus \{0\}} \exp(V_{i}(C_{j},h_{j}))\right)} & \text{otherwise.} \end{cases}$$

Note (2): $P\Big(W^i_{El}(C_k,h_k) \le C_0 \mid k \text{ is chosen}\Big) = 0$

$$P\Big(W_{EI}^{i}(C_{k},h_{k}) \leq y \mid k \text{ is chosen}\Big) = \begin{cases} 0 & \text{if } y < C_{0}, \\ \frac{\exp(V_{i}(y,0)) - \exp(V_{i}(C_{0},0))}{\exp(V_{i}(y,0)) + \left(\sum_{h_{j} \in H \setminus \{0\}} \exp(V_{i}(C_{j},h_{j}))\right)} & \text{otherwise.} \end{cases}$$

Note (2):

$$P\Big(W^i_{El}(C_k,h_k) \le C_0 \mid k \text{ is chosen}\Big) = 0$$

If $y < C_0 : V_i(C_0,0) + \varepsilon_0^i > V_i(y,0) + \varepsilon_0^i$

$$P\Big(W_{EI}^{i}(C_{k},h_{k}) \leq y \mid k \text{ is chosen}\Big) = \begin{cases} 0 & \text{if } y < C_{0}, \\ \frac{\exp(V_{i}(y,0)) - \exp(V_{i}(C_{0},0))}{\exp(V_{i}(y,0)) + \left(\sum_{h_{j} \in H \setminus \{0\}} \exp(V_{i}(C_{j},h_{j}))\right)} & \text{otherwise.} \end{cases}$$

Note (2):

$$P\Big(W_{El}^i(C_k,h_k) \le C_0 \mid k \text{ is chosen}\Big) = 0$$

If $y < C_0 : V_i(C_0,0) + \varepsilon_0^i > V_i(y,0) + \varepsilon_0^i = V_i(C_k,h_k) + \varepsilon_k^i$

Outline

Motivation

Theoretical results

Empirical illustration Data How to compare RVs? Stochastic El vs. deterministic El

Conclusion

Empirical illustration

Empirical illustration has two goals:

 how to compare individuals with each other if their welfare is a random variable?

Empirical illustration

Empirical illustration has two goals:

- how to compare individuals with each other if their welfare is a random variable?
- how does the stochastic El compare with the deterministic El?

Empirical results

Outline

Motivation

Theoretical results

Stochastic equivalent income in an arbitrary bundle Stochastic equivalent income in a chosen bundle

Empirical illustration

Data

How to compare RVs? Stochastic El vs. deterministic E

Conclusion

Data

Data for the empirical illustration:

- SILC 2015
- singles
- between 18 and 64, available for the labour market
- Self-employed individuals and employers excluded
- no extra adults available for the labour market are allowed

Data

Data for the empirical illustration:

- SILC 2015
- singles
- between 18 and 64, available for the labour market
- Self-employed individuals and employers excluded
- no extra adults available for the labour market are allowed Model estimated on it:
- Preferences estimated as in Capéau et al. (2018)
- gender specific Box–Cox utility function
- marginal rates of substitution which depend on age, education, region and the number of children

Data

Description Female Male Age (years) 43.0 41.5 Dependent children (%) 0 - 3 years 5.0 0.7 4 - 6 years 6.2 1.4 7 - 9 years 7.8 0.9 Experience (years) 16.6 18.8 Education (%) Low 22.1 19.6 Middle 36.1 39.0 41 8 High 41 4 Residence (%) Brussels 20.2 17.3 Flanders 45 4 48.3 Wallonia 34.4 34.4 Participation rate (%) 67.9 73.7 Hours worked (hours/week) Unconditional 24.0 29.8 Conditional on working 35.3 40.4 Hourly wage (euro) 20.4 21.2 Disposable income (euro/month) 2123.1 2345.9 Number of observations 644 526

Table: Descriptive statistics SILC subsample

Outline

Motivation

Theoretical results

Stochastic equivalent income in an arbitrary bundle Stochastic equivalent income in a chosen bundle

Empirical illustration

Data How to compare RVs? Stochastic El vs. deterministic E

Conclusion

Figure: Cdf of stochastic equivalent income for some working individuals

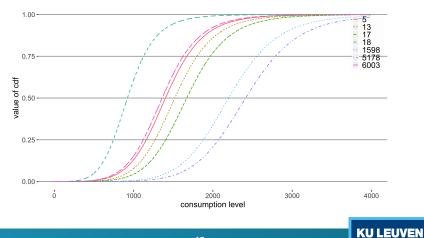
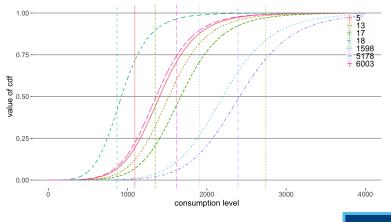


Figure: Cdf of stochastic equivalent income for some working individuals compared to deterministic equivalent income (dashed lines)



Outline

Motivation

Theoretical results

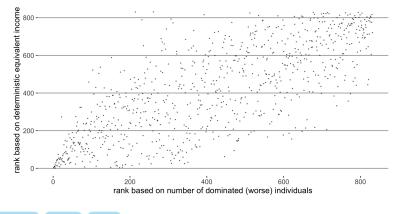
Stochastic equivalent income in an arbitrary bundle Stochastic equivalent income in a chosen bundle

Empirical illustration

Data How to compare RVs? Stochastic El vs. deterministic El

Conclusion

Figure: Rank plot



19

Outline

Motivation

Theoretical results

Empirical illustration

Conclusion

Conclusion

In this paper, we

- developed the concept of Stochastic EI
- derived the (un)conditional distribution of stochastic El in discrete choice context
- empirically illustrated the relevance of the concept by proving it differs considerably from determinisitc El

Preference based welfare analysis with unobserved heterogeneity

Thank you!

Figure: The number of stochastic dominances per individual

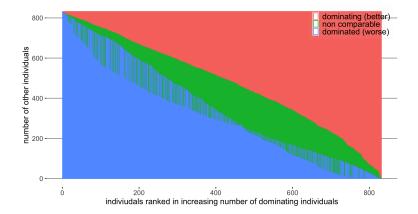
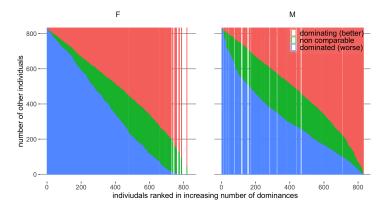


Figure: The number of stochastic dominances per individual split by gender



versus all (M versus all) (F versus F) (M ve

Figure: Rank plot

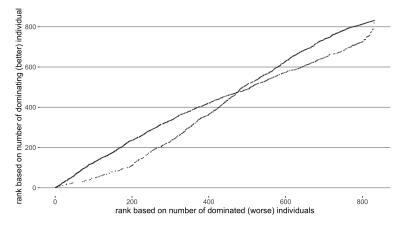


Figure: Rank plot by gender

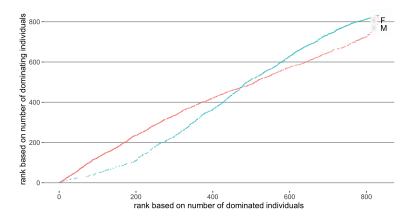
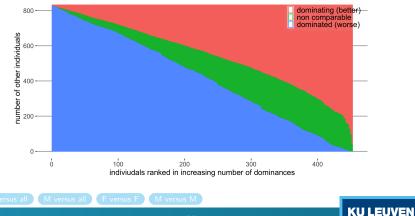


Figure: The number of stochastic dominances per individual - females vs all

F



26

Figure: The number of stochastic dominances per individual - males vs all

Μ

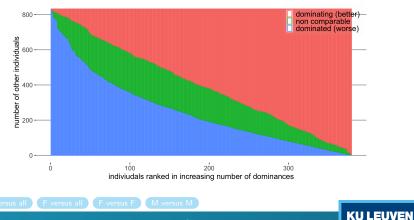


Figure: The number of stochastic dominances per individual - females vs females

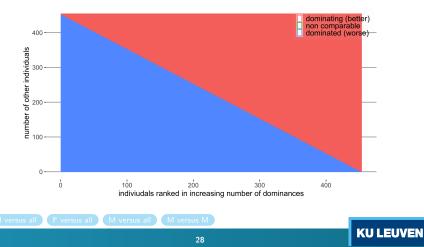


Figure: The number of stochastic dominances per individual - males vs males

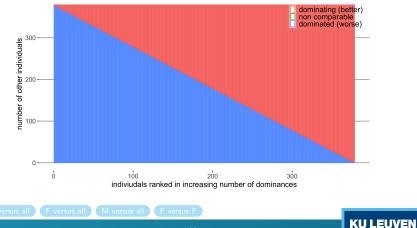


Figure: Rank plot

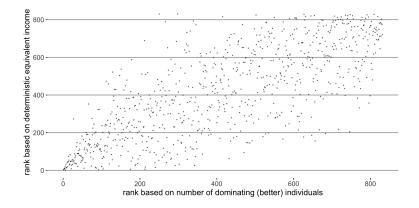


Figure: Rank plot stochastic versus observed consumption

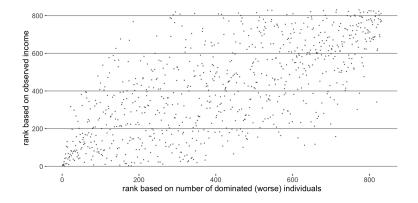


Figure: Rank plot deterministic versus observed consumption

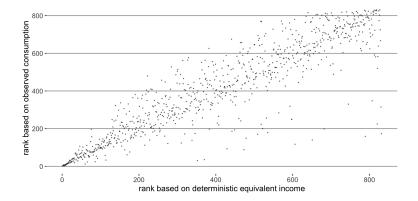


Figure: Rank plot by gender

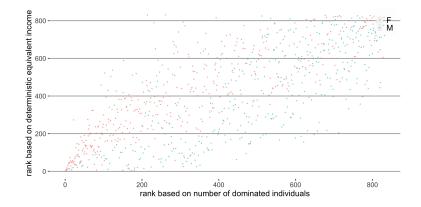
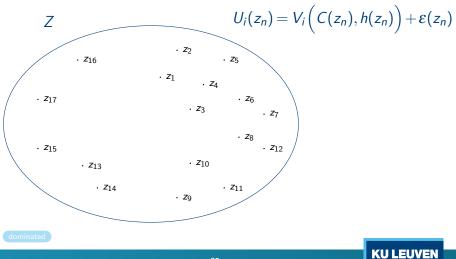
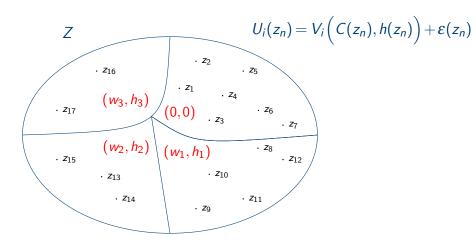


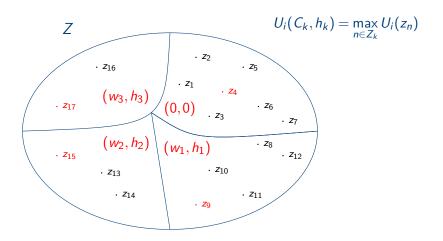
Table: Rank differences stochastic vs. deterministic

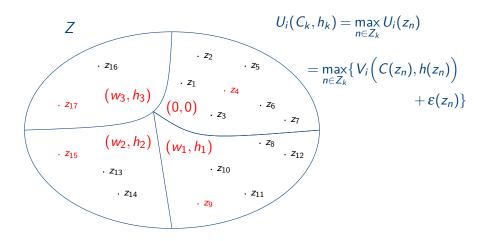
	st	stochastic		deterministic	
rank quintiles	F	М	F	М	
(1,167]	128	38	88	78	
(167,333]	116	50	97	69	
(333,499]	104	62	98	68	
(499,665]	74	92	89	77	
(665,831]	29	137	79	87	

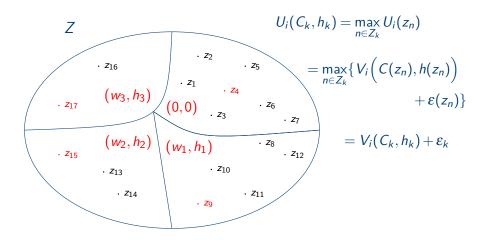
RURO: the idea











RURO, summary:

individuals choose jobs, not only labour hours

RURO, summary:

- individuals choose jobs, not only labour hours
- discrete choice, but

RURO, summary:

- individuals choose jobs, not only labour hours
- discrete choice, but
- idiosyncratic choice sets, which are draws from individual specific random variables

RURO, summary:

- individuals choose jobs, not only labour hours
- discrete choice, but
- idiosyncratic choice sets, which are draws from individual specific random variables
- argument for Gumbel distributed random terms

Empirical illustration

Distribution of El in arbitrary bundle (RURO)

Theorem (Unconditional distribution - RURO) The stochastic equivalent income W_{EI}^i evaluated in an arbitrary set of bundles \mathscr{B} equals the income when not working C_0 for $\mathscr{B} = \{0\}$. Distribution of El in arbitrary bundle (RURO)

Theorem (Unconditional distribution - RURO) The stochastic equivalent income W_{EI}^i evaluated in an arbitrary set of bundles \mathscr{B} equals the income when not working C_0 for $\mathscr{B} = \{0\}$. For $\mathscr{B} \neq \{0\}$, it is a random variable distributed as follows:

$$P\left(W_{El}^{i}\left(\mathscr{B}\right) \leq y\right) = \frac{\exp\left(V_{i}(y,0)\right)}{\exp\left(V_{i}(y,0)\right) + \exp\left(\tilde{\mu}_{W}^{i} - \tilde{\mu}_{0}^{i}\right)\exp\left(V_{i}(\mathscr{B})\right)}.$$

where $\exp\left(V_{i}(\mathscr{B})\right) = \int_{\mathscr{B}}g_{i}(w,h)\exp\left(V_{i}(C(w,h),h)\right)\,dw\,dh$

Distribution of El in chosen bundle (RURO)

Theorem (Conditional distribution - RURO) The stochastic equivalent income W_{EI}^i evaluated in a chosen bundle in a set \mathscr{B} equals the income when not working C_0 for $\mathscr{B} = \{0\}$. Distribution of El in chosen bundle (RURO)

Theorem (Conditional distribution - RURO) The stochastic equivalent income W_{EI}^i evaluated in a chosen bundle in a set \mathscr{B} equals the income when not working C_0 for $\mathscr{B} = \{0\}$. For $\mathscr{B} \neq \{0\}$, it is a random variable distributed as follows:

$$\begin{split} P\Big(W_{El}^{i}\Big(\mathscr{B}\Big) &\leq y \mid \text{ a bundle in } \mathscr{B} \text{ is chosen}\Big) = \\ \begin{cases} 0 & \text{if } y < C_{0}, \\ \frac{\exp(V_{i}(y,0)) - \exp(V_{i}(C_{0},0))}{\exp(V_{i}(y,0)) + \exp(\tilde{\mu}_{W}^{i} - \tilde{\mu}_{0}^{i})\exp(V_{i}(X))} & \text{otherwise.} \end{cases} \end{split}$$

where $\exp(V_i(X)) = \int_X g_i(w, h) \exp(V_i(C(w, h), h)) dw dh$