Inheritance Taxation and Wealth Effects on the Labor Supply of Heirs

Fabian KindermannLukas MayrDominik Sachs(Uni Regensburg/CEPR)(Uni Essex)(LMU Munich/CEPR)

Annual Inheritance Flow

Source: Piketty (2011, QJE): On the Long-run Evolution of Inheritance

Annual Inheritance Flow (g = 1.0%, r = 5.0%)

Source: Piketty (2011, QJE): On the Long-run Evolution of Inheritance

Motivation

- Inheritances of growing importance in Western economies
- Inheritance taxation potential source of tax revenue
- Incentive effects of inheritance taxation poorly understood

In This Paper

- Contribute to incidence of inheritance taxation
- One particular channel: labor supply of heirs
- Why important for tax incidence?
 - If government raises bequest taxes
 - \Rightarrow Wealth effect on labor earnings of heirs
 - \Rightarrow Higher labor income tax revenue

In This Paper

- Contribute to incidence of inheritance taxation
- One particular channel: labor supply of heirs
- Why important for tax incidence?
 - If government raises bequest taxes
 - \Rightarrow Wealth effect on labor earnings of heirs
 - \Rightarrow Higher labor income tax revenue

Result:

Each additional Euro of bequest tax revenue leads to an increase in labor income taxes of 8.9 Cents in Germany

How Do We Arrive There

- Empirical measurement complicated
 - Anticipation effects
 - Hard to find exogenous variation

How Do We Arrive There

- Empirical measurement complicated
 - Anticipation effects
 - Hard to find exogenous variation
- However, evidence of lottery gains on labor income
 - Cesarini/Lindqvist/Notowidigdo/Ostling (2017, AER)
 - One dollar increase in lottery wealth
 - \Rightarrow 1.07 cents decline in annual earnings in first 5 years

How Do We Arrive There

- Empirical measurement complicated
 - Anticipation effects
 - Hard to find exogenous variation
- However, evidence of lottery gains on labor income
 - Cesarini/Lindqvist/Notowidigdo/Ostling (2017, AER)
 - One dollar increase in lottery wealth
 - \Rightarrow 1.07 cents decline in annual earnings in first 5 years
- Theory: Back-of-the-envelope calculation fails
 - Bequests (partially) anticipated by heirs
 - If bequests uncertain, even (ex-post) non-heirs affected

Quantitative Life-Cycle Model

Quantitative life-cycle model to replicate lottery evidence

Realistic expectations about size and timing of inheritances

Quantitative Life-Cycle Model

Quantitative life-cycle model to replicate lottery evidence

- Realistic expectations about size and timing of inheritances
- Evaluate labor supply effects of bequest taxation
- For each Euro of bequest tax revenue
 - \Rightarrow 8.9 cents increase in labor income taxes
 - 48% owing to anticipation effect

Theoretical Explorations

Theoretical Explorations

Characterize main mechanisms at work

- Study sequence of models:
 - Connect wealth effect to preference parameters
 - Illustrate our calibration strategy
 - Show importance of anticipation effects

Preferences:

$$U = u(c,l) = \frac{c^{1-\gamma}}{1-\gamma} - \frac{l^{1+\chi}}{1+\chi}$$

$$c \leq (1-\tau)y + \underbrace{(1-\tau_b)b + T}_{=R}$$
 with $y = wl$

Bequests b exogenous and subject to tax τ_b

Change in earnings y due to change in R

$$\eta = \frac{dy}{dR} = -\frac{1}{\left(1 + \frac{\chi}{\gamma}\right)(1 - \tau) + \frac{\chi}{\gamma}\frac{R}{y}} \le 0$$

 A 1 Euro change in unearned income leads to a change in labor earnings of η Euros.

Change in earnings y due to change in R

$$\eta = \frac{dy}{dR} = -\frac{1}{\left(1 + \frac{\chi}{\gamma}\right)(1 - \tau) + \frac{\chi}{\gamma}\frac{R}{y}} \le 0$$

 A 1 Euro change in unearned income leads to a change in labor earnings of η Euros.

For change in bequest tax

$$\frac{dy}{d au_b} = \frac{dy}{dR} \times \frac{dR}{d au_b} = -\eta \times b$$

Change in earnings y due to change in R

$$\eta = \frac{dy}{dR} = -\frac{1}{\left(1 + \frac{\chi}{\gamma}\right)(1 - \tau) + \frac{\chi}{\gamma}\frac{R}{y}} \le 0$$

 A 1 Euro change in unearned income leads to a change in labor earnings of η Euros.

For change in bequest tax

$$\frac{dy}{d\tau_b} = \frac{dy}{dR} \times \frac{dR}{d\tau_b} = -\eta \times b$$

• LESSON: $\frac{\chi}{\gamma}$ important determinant of income effect

Augment to two-period model

Preferences

$$U = u(c_1, l_1) + \beta u(c_2, l_2)$$

Dynamic budget constraint

$$c_{1} + \frac{c_{2}}{1+r} \leq (1-\tau) \left[\underbrace{y_{1} + \frac{y_{2}}{1+r}}_{=:y} \right] + \underbrace{(1-\tau_{b})b + T_{1} + \frac{T_{2}}{1+r}}_{=:R}$$

Bequests received in period 1

Present value reaction in income

$$\eta = \frac{dy}{dR} = \frac{dy_1 + \frac{dy_2}{1+r}}{dR} = -\frac{1}{\left(1 + \frac{\chi}{\gamma}\right)(1-\tau) + \frac{\chi}{\gamma}\frac{R}{y}} \le 0$$

Present value reaction in income

$$\eta = \frac{dy}{dR} = \frac{dy_1 + \frac{dy_2}{1+r}}{dR} = -\frac{1}{\left(1 + \frac{\chi}{\gamma}\right)\left(1 - \tau\right) + \frac{\chi}{\gamma}\frac{R}{y}} \le 0$$

Define

$$\eta_1 = \frac{dy_1}{dR}$$
 and $\eta_2 = \frac{dy_2}{dR}$ such that $\eta = \eta_1 + \frac{\eta_2}{1+r}$

Impulse response function

$$\eta_2 = \left[\frac{w_2}{w_1}\right]^{1+\frac{1}{\chi}} [\beta(1+r)]^{-\frac{1}{\chi}} \eta_1$$

Present value reaction in income

$$\eta = \frac{dy}{dR} = \frac{dy_1 + \frac{dy_2}{1+r}}{dR} = -\frac{1}{\left(1 + \frac{\chi}{\gamma}\right)(1-\tau) + \frac{\chi}{\gamma}\frac{R}{y}} \le 0$$

Define

$$\eta_1 = \frac{dy_1}{dR}$$
 and $\eta_2 = \frac{dy_2}{dR}$ such that $\eta = \eta_1 + \frac{\eta_2}{1+r}$

Impulse response function

$$\eta_2 = \left[\frac{w_2}{w_1}\right]^{1+\frac{1}{\chi}} \left[\beta(1+r)\right]^{-\frac{1}{\chi}} \eta_1$$

• LESSON: β majorly determines impulse response

• Add a period t = 0 before receipt of b

• Only fraction π receives bequest

Expected utility

$$U = u(c_0, l_0) + \beta \Big[\pi \left(u(c_1^I, l_1^I) + \beta u(c_2^I, l_2^I) \right) \\ + (1 - \pi) \left(u(c_1^N, l_1^N) + \beta u(c_2^N, l_2^N) \right) \Big]$$

Period 0 budget constraint

$$c_0 \le (1-\tau)y_0 + \underbrace{T_0 - a_1}_{=:R_0}$$

Period 0 wealth effect (constant savings)

$$\eta_0 = \left. \frac{dy_0}{dR_0} \right|_{da_1=0} = -\frac{1}{\left(1 + \frac{\chi}{\gamma}\right)(1-\tau) + \frac{\chi}{\gamma} \frac{R_0}{y_0}}$$

▶ Period 1 intertemporal budget constraint (K = I, N)

$$\begin{split} c_{1}^{K} + \frac{c_{2}^{K}}{1+r} &\leq (1-\tau) \Big[\underbrace{y_{1}^{K} + \frac{y_{2}^{K}}{1+r}}_{y^{K}} \Big] \\ &+ \underbrace{\mathbb{1}_{K=I}(1-\tau_{b})b + T_{1} + \frac{T_{2}}{1+r} + (1+r)a_{1}}_{=:R^{K}} \end{split}$$

Period 1 wealth effect (constant savings)

$$\eta^{K} = \frac{dy^{K}}{dR^{K}} = -\frac{1}{\left(1 + \frac{\chi}{\gamma}\right)\left(1 - \tau\right) + \frac{\chi}{\gamma}\frac{R^{K}}{y^{K}}}$$

Savings response to change in bequest tax: $\alpha = \frac{da_1}{d\tau_k b}$.

Change in exogenous income

$$rac{dR_0}{d au_b b}=-lpha$$
 , $rac{dR^N}{d au_b b}=(1+r)lpha$ and $rac{dR^I}{d au_b b}=-1+(1+r)lpha$

$$\frac{dy}{d\tau_b b} = \underbrace{-\frac{\pi \eta^I}{1+r}}_{\text{naive effect}} \underbrace{-\alpha \left[\eta_0 - \left(\pi \eta^I + (1-\pi)\eta^N\right)\right]}_{\text{effect of savings adjustment}}$$

Savings response to change in bequest tax: $\alpha = \frac{da_1}{d\tau_k b}$.

Change in exogenous income

$$rac{dR_0}{d au_b b}=-lpha$$
 , $rac{dR^N}{d au_b b}=(1+r)lpha$ and $rac{dR^I}{d au_b b}=-1+(1+r)lpha$

$$\frac{dy}{d\tau_b b} = \underbrace{-\frac{\pi \eta^I}{1+r}}_{\text{naive effect}} \underbrace{-\alpha \left[\eta_0 - \left(\pi \eta^I + (1-\pi)\eta^N\right)\right]}_{\text{effect of savings adjustment}}$$

Savings response to change in bequest tax: $\alpha = \frac{da_1}{d\tau_k b}$.

Change in exogenous income

$$rac{dR_0}{d au_b b}=-lpha$$
 , $rac{dR^N}{d au_b b}=(1+r)lpha$ and $rac{dR^I}{d au_b b}=-1+(1+r)lpha$

$$\frac{dy}{d\tau_b b} = \underbrace{-\frac{\pi \eta^I}{1+r}}_{\text{naive effect}} \underbrace{-\alpha \left[\eta_0 - \left(\pi \eta^I + (1-\pi)\eta^N\right)\right]}_{\text{effect of savings adjustment}}$$

Savings response to change in bequest tax: $\alpha = \frac{da_1}{d\tau_k b}$.

Change in exogenous income

$$rac{dR_0}{d au_b b}=-lpha$$
 , $rac{dR^N}{d au_b b}=(1+r)lpha$ and $rac{dR^I}{d au_b b}=-1+(1+r)lpha$

$$\frac{dy}{d\tau_b b} = \underbrace{-\frac{\pi \eta^I}{1+r}}_{\text{naive effect}} \underbrace{-\alpha \left[\eta_0 - \left(\pi \eta^I + (1-\pi)\eta^N\right)\right]}_{\text{effect of savings adjustment}}$$
$$= \underbrace{-\alpha \eta_0}_{\text{anticipation effect}} + \underbrace{\pi \eta^I \left[\alpha - \frac{1}{1+r}\right]}_{\text{heir effect}} + \underbrace{(1-\pi)\eta^N \alpha}_{\text{non-heir effect}}$$

Lessons Learned

Without anticipation effects (lotteries)

- $\frac{\chi}{\gamma}$ mainly governs PV reaction
- β shapes impulse response

Anticipation effects

- Arise when savings change prior to bequest receipt
- Also causes non-heir change in labor earnings
- Can distort empirical estimates
- \Rightarrow Use quantitative model to evaluate effects

The Quantitative Model

Timing and Endowments

• Time $t \in \{1, \ldots, T\}$ is discrete

- Continuum of mass 1 of heterogeneous households
- Enter economy at age 20, retire at 65
- ▶ Draw a time-invariant earnings capacity $e \in \{1, ..., E\}$
- ▶ Draw a signal $s \in \{0, ..., n\}$ about inheritance class

Bequests and Expectations

- Uncertainty with respect to timing and size
- Each individual has exactly one parent
 - still alive when household enters economy
 - dies according to unconditional distribution p^e_t
 - dies with certainty when agent alive $\sum_{t=1}^{T} p_t^e = 1$

• leaves a bequest
$$b \in \{b_{it}^e\}_{i=0}^n$$

Bequests and Expectations

- Uncertainty with respect to timing and size
- Each individual has exactly one parent
 - still alive when household enters economy
 - dies according to unconditional distribution p^e_t
 - dies with certainty when agent alive $\sum_{t=1}^{T} p_t^e = 1$

• leaves a bequest
$$b \in \{b_{it}^e\}_{i=0}^n$$

Individual expectations about i depend on signal s

$$\Rightarrow \sum_{i=1}^{I} \pi_{si} = 1$$

Dynamic Life Cycle Decision Making

Value function

$$V_{t}(e, s, h_{t}, W_{t}) = \max_{c_{t}, l_{t}, a_{t+1}} \left\{ \frac{c_{t}^{1-\gamma}}{1-\gamma} - \frac{l_{t}^{1+\chi}}{1+\chi} + \beta \mathbb{E} \left[V_{t+1}(e, s, h_{t+1}, W_{t+1}) \left| e, s, h_{t} \right] \right\}$$

Dynamic Life Cycle Decision Making

Value function

$$V_{t}(e, s, h_{t}, W_{t}) = \max_{c_{t}, l_{t}, a_{t+1}} \left\{ \frac{c_{t}^{1-\gamma}}{1-\gamma} - \frac{l_{t}^{1+\chi}}{1+\chi} + \beta \mathbb{E} \left[V_{t+1}(e, s, h_{t+1}, W_{t+1}) \left| e, s, h_{t} \right] \right\}$$

Dynamic budget constraint

$$c_t + a_{t+1} = w_t^e l_t - \mathcal{T} \left(w_t^e l_t \right) + \mathcal{P}_t^e + W_t$$

with household wealth

$$W_t = [1 + (1 - \tau_k)r] a_t + (1 - \tau_b)b_{it}^e$$

Parameterizing Expectations

- Fraction φ_s^e receives signal s
- Cross-sectional distribution of heirs on bequest classes ω_i^e
- Consistency between expectations and actual distribution

$$\forall i, e: \sum_{s=0}^{n} \varphi_{s}^{e} \cdot \pi_{is}^{e} = \omega_{i}^{e}$$

Parameterizing Expectations

- Fraction φ_s^e receives signal s
- Cross-sectional distribution of heirs on bequest classes ω_i^e
- Consistency between expectations and actual distribution

$$\forall i, e: \sum_{s=0}^{n} \varphi_{s}^{e} \cdot \pi_{is}^{e} = \omega_{i}^{e}$$

We assume that

$$\pi^{e}_{is} = (1 - \sigma)\omega^{e}_{i} + \sigma \cdot \mathbb{1}(i = s) \quad \text{for} \quad \sigma \in [0, 1]$$

• σ is a measure of signal quality

Calibration

Calibration Summary

Prices and government policy

Wealth Effects on Labor Supply

- Match lottery evidence from Cesarini et al. (2017)
- Recall from theoretical analysis:
 - $\blacktriangleright \frac{\chi}{\gamma}$ mainly governs PV reaction
 - \triangleright β shapes impulse response

Wealth Effects on Labor Supply

- Match lottery evidence from Cesarini et al. (2017)
- Recall from theoretical analysis:
 - $\sim \frac{\chi}{\gamma}$ mainly governs PV reaction
 - β shapes impulse response
- We proceed as follows:
 - fix risk aversion at $\gamma = 1$
 - ► $\chi \rightarrow$ 1.07 cents decline in annual earnings in first 5 years
 - $\beta \rightarrow$ steepness of impulse response
- Preferred Parameters: $\chi = 4.06$ and $\beta = 0.981$

Fit For Average IRF (Gross Earnings)

Fit For Average IRF (Net Earnings, Untargeted)

Simulation Results

Increase Uniform Bequest Tax by 1%

		Decomposition			
	Total	Anticipation	Heirs	Non-Heirs	
Earnings	21.66 (14.59, 24.82)	10.52	11.80	-0.66	
Taxes	8.87 (5.99, 10.16)	4.24	4.90	-0.27	

The Role of Signal Quality

No Anticipation: Myopia

		Decomposition			
	Total	Anticipation	Heirs	Non-Heirs	
Earnings	14.32	0.00	14.32	0.00	
Taxes	5.97	0.00	5.97	0.00	

Further Results

Conclusion

- Inheritance taxes increase heirs' labor supply
- Leads to additional income tax revenue from heirs
- Each additional Euro of bequest tax revenue leads to an increase in labor income taxes of 8.9 Cents in Germany

Conclusion

Inheritance taxes increase heirs' labor supply

- Leads to additional income tax revenue from heirs
- Each additional Euro of bequest tax revenue leads to an increase in labor income taxes of 8.9 Cents in Germany
- Methodology:
 - State-of-the-art quantitative life-cycle model
 - + quasi-experimental evidence on effects of lottery gains
- Robustness tests regarding expectations

Related Literature

- Wealth effects of lottery gains
 - Imbens/Rubin/Sacerdote (AER, 2001)
 - Cesarini/Lindqvist/Notowidigdo/Ostling (AER, 2017)
- Impact of inheritances on labor supply and earnings
 - Holtz-Eakin/Joulfaian/Rosen (QJE, 1993)
 - Brown/Coile/Weisbenner (REStat, 2010)
 - Doorley and Pestel (WP, 2016)
 - Elinder/Erixson/Ohlsson (BE A&P, 2012)
 - Bø/Halvorsen/Thoresen (JHR, 2018)

Earnings Classes Non-College

Earnings Classes College

Probability Ancestral Death Non-College

Back

Probability Ancestral Death College

Back

Mean Bequests Non-College

• Back

Mean Bequests College

Back

Bequest Classes (Relative to Mean)

Education	Q1 (<i>i</i> = 1)	Q2 (<i>i</i> = 2)	Q3 (<i>i</i> = 3)	Q4 (<i>i</i> = 4)
Low	0.070	0.232	0.611	3.095
High	0.070	0.258	0.704	2.971

Marginal Tax Schedule

Preference Parameters, Price and Government Policy

Parameter	Value	Note
Т	61	Age of death = 80
t_r	46	Retirement age = 65
r	4%	Interest rate
<i>a</i> ₀	0	No initial wealth
\mathcal{P}	0.40	Pension = 40% of av. gross income
$ au_0$	0.321	Average labor earnings tax rate
$ au_1$	0.128	Progressivity of labor tax
$ au_k$	0.25	Linear capital income tax
$ au_b$	0.00	Linear inheritance tax

Heterogeneity in Effects

	Low Education			High Education					
e =	1	2	3	4		5	6	7	8
Earnings	15.01	20.57	21.53	24.07		16.30	20.22	23.40	24.38
Taxes	4.57	7.52	8.47	10.34		5.65	8.01	9.87	11.19

Effects are measured as fraction of change in bequest tax revenue by earnings class.

Short-run vs. Long-Run Interpretation

Sensitivity Analysis

	$\gamma=0.51,\chi=2.0$ and $eta=0.9715$					
	Total	Anticipation	Heirs	Non-Heirs		
Gross Earnings	22.32	11.41	11.64	-0.73		
Labor Taxes	9.13	4.59 4.83		-0.29		
	$\gamma=4.0,\chi=16.8$ and $eta=1.04$					
	Total	Anticipation	Heirs	Non-Heirs		
Gross Earnings	18.86	6.65	12.61	-0.40		
Labor Taxes	7.76	2.69	5.24	-0.16		

Effects are measured as fraction of change in bequest tax revenue.