

The role of automatic stabilisers in the European Union business cycle

Vanda Almeida, Salvador Barrios, Francesca D'Auria, Alberto Tumino, Janos Varga

JRC Fiscal Policy Modelling Workshop Sevilla, 13 February 2020

- 1. Introduction
- 2. Concepts
- 3. Methodology
- 4. Main results
- 5. Concluding remarks

- 1. Introduction
- 2. Concepts
- 3. Methodology
- 4. Main results
- 5. Concluding remarks

1. Introduction: Motivation - policy relevance

- Long-standing debate on merits of fiscal vs monetary policy in smoothing cyclical fluctuations.
- 2007–2008 crisis revived the debate:
 - Need to better understand how to set crisis-coping policies effective at stabilising economic activity in times of crisis;
 - Importance of fiscal policy at a time of constrained monetary policy.
- Focus on the role of automatic stabilisers (AS):
 - Discretionary fiscal policy measures face many obstacles,
 e.g. implementation lags and risk of future imbalances.

1. Introduction: Motivation - methodological relevance

- Non-negligible existing literature, but based on two separate approaches, with little reconciliation:
 - Micro: focus on stabilising effects of tax-benefit instruments on household disposable income, using micro data and models - no behavioural and general equilibrium effects;
 - Macro: focus on stabilising effects of aggregate taxes and expenditures on macroeconomic variables, using macro data and models - no account for micro heterogeneity and unrealistic tax-benefit system.
- Room for improvement through development of more integrated and realistic micro-macro approach, considering both household and aggregate levels.

1. Introduction: This paper

- Develops **new micro-macro method** to compute the stabilising role of AS, **combining** the EC's microsimulation model, **EUROMOD**, and DSGE model, **QUEST**.
- Introduces new link through **estimated tax functions**, extending dynamic scoring exercise in Barrios et al. 2019.
- Applies new method to study the stabilising role of AS following a shock mimicking the **2012 crisis in Italy**.
- Focuses on **3 types of AS**: personal income tax (PIT), employee and employer social security contributions (SSC).

- 1. Introduction
- 2. Concepts
- 3. Methodology
- 4. Main results
- 5. Concluding remarks

2. Concepts: What are AS and how they work

- AS are fiscal instruments that "mechanically" smooth cyclical fluctuations at unchanged policies i.e. without any discretionary government intervention.
- They work through countercyclical changes in taxes and spending that arise from the dependance of these instruments on economic conditions.
- The changes in taxes and spending dampen fluctuations in households' income, stabilising disposable income, consumption, aggregate demand and output.

2. Concepts: Main types of AS

- On the taxes side, main AS are PIT and SSC:
 - Since taxes are a positive function of market income (MY), they will decrease (increase) during downturns (upturns), so disposable income (Y) will change less than MY.
- On the spending side, main AS are means-tested benefits and unemployment insurance (UI):
 - Since means-tested benefits are a negative function of MY, they will increase (decrease) during downturns (upturns), so Y will change less than MY;
 - During downturns (upturns) more (less) people qualify for unemployment benefits, so Y will change less than MY.

2. Concepts: Two simple examples

- **PIT** with a 20% tax rate:
 - MY=100, t=0.2, T=20, Y=80;
 - Shock that reduces MY by 50: MY'=50, t=0.2, T'=10, Y'=40;
 - A shock of 50 to MY reduced Y by "only" 40, 10 was absorbed by taxes.
- **UI** with a 50% replacement rate:
 - MY=100, rr=0.5, UB=0, Y=100;
 - Shock that induces unemployment: MY'=0, rr=0.5, UB=50, Y'=50;
 - A shock of 100 to MY reduced Y by "only" 50, 50 was absorbed by unemployment benefits.

- 1. Introduction
- 2. Concepts
- 3. Methodology
- 4. Main results
- 5. Concluding remarks

3. Methodology: A bird's eye view

• **Aim**: analyse role of PIT and SSC in stabilising key macro variables during a downturn like in Italy in 2012.

Main steps:

- 1. Derive parameters for **QUEST calibration** using EUROMOD (as in Barrios et al. 2019);
- 2. Estimate **tax functions** based on four different tax-benefit systems, obtained by sequentially "switching off" SSCer, SSCee and PIT in EUROMOD;
- 3. Simulate **shock** to Italian economy in 2012;
- 4. Shock QUEST and compute smoothing capacity of each type of AS on key macroeconomic variables.

3. Methodology: Data and sample

- Data used in Steps 1 and 2 based on the 2018
 EUROMOD policy system and data from the 2016
 European Union Statistics on Income and Living Conditions (EU-SILC) survey.
- Estimation sample for tax functions restricted to individuals with positive labour earnings as sole source of market income and not receiving any benefits or pensions.

3. Methodology: Step 1 - QUEST calibration

- Calibration of labour market parameters in QUEST done using data based on EUROMOD and EU-SILC.
- Same procedure as in Barrios et al. 2019:
 - Labour supply elasticities and participation rates, by skill level, estimated using a labour supply model running on EUROMOD;
 - Number of employed/unemployed and average gross wages, by skill level, computed based on EU-SILC data.

3. Methodology: Step 2 - Tax functions estimation (I)

- In Barrios et al. 2019, tax rates in QUEST calibrated based on implicit tax rates, computed using EUROMOD and EU-SILC data.
- Here, tax rates modelled as non-linear tax functions, estimated using EUROMOD and EU-SILC data.
- Estimation done separately for employees and employers.
- 3 possible functional forms, as in Guner et al. (2014):

Log specification
$$t(y) = \alpha + \beta \log(y)$$

HSV specification $t(y) = 1 - \lambda y^{-\tau}$
Power specification $t(y) = \delta + \psi y^{\varepsilon}$

3. Methodology: Step 2 - Tax functions estimation (II)

- 4 scenarios, in decreasing degree of stabilisation, by sequentially "switching off" SSC and PIT in EUROMOD:
 - Scenario 1 (Baseline): all AS "switched on" Full tax-benefit system;
 - Scenario 2: SICer "switched off"
 Tax-benefit system without SICer;
 - Scenario 3: SICee "switched off"

 Tax-benefit system without SICer and SICee;
 - Scenario 4: PIT "switched off"
 Tax-benefit system without SICer, SICee and PIT.
- Each scenario produces an output dataset, used to estimate the tax functions that will be plugged into QUEST.

3. Methodology: Step 3 - Shock simulation

- Shock is calibrated on the basis of the historical decomposition of real GDP growth obtained using the European Commission Global Multi Country Model.
- Decomposition shows that largest share of real GDP growth fluctuations in Italy in 2012 was attributable to domestic demand shocks, with small role of supply shocks.
- Mimicked in QUEST using combination of demand shocks.

3. Methodology: Step 4 - Size of AS computation

- Degree of stabilisation done by each AS assessed by comparing impact of shock on key macroeconomic variables in QUEST under the 4 scenarios.
- For each scenario, smoothing capacity of AS "switched on" in that scenario assessed **against budget neutral benchmark**, where tax revenues are kept constant.
- Formally, for each variable of interest X, we have:

Percentage smoothing =
$$1 - \frac{\Delta X}{\Delta X_{benchmark}}$$

- 1. Introduction
- 2. Concepts
- 3. Methodology
- 4. Main results
- 5. Concluding remarks

4. Main results: Tax functions

Figure 1: Estimated tax functions (only scenario 1, all AS on)

4. Main results: Parameters of tax functions

Table 1: Estimated parameters of tax functions (only log specif.)

	Employers	Employees			
	Scenario 1	Scenario 1	Scenario 2	Scenario 3	
	(All AS)	(All AS)	(No SSCer)	(No SSC)	
	SSCer	SSCee+PIT	SSCee+PIT	PIT	
Constant (α)	0.317***	0.269***	0.269***	0.204***	
	(0.001)	(0.001)	(0.001)	(0.001)	
Earnings (β)	-0.026***	0.083***	0.083***	0.106***	
	(0.001)	(0.001)	(0.001)	(0.001)	
Observations	3729	3729	3729	3817	

4. Main results: Size of AS

Table 2: Percentage smoothing of key macroeconomic variables done by each AS and in total

	SSCer	SSCee	PIT	Total
Real GDP	2.6	0.6	3.5	6.7
Domestic private demand	2.9	0.8	3.4	7.0
Private consumption	4.5	1.1	4.9	10.5
Private investment	-0.4	0.0	-0.1	-0.5

4. Main results: Sensitivity analysis of size of AS

Table 3: Percentage smoothing of key macroeconomic variables done in total under higher progressivity of employees tax function and higher share of liquidity constrained households

	Original estimates (Table 2)	Higher progressivity in employee tax function (β) (from 0.083 to 0.183)	Higher share of liquidity constrained (from 40% to 50%)
Real GDP Domestic private demand Private consumption Private investment	6.7	8.0	8.5
	7.0	7.9	9.0
	10.5	11.8	13.7
	-0.5	-0.5	-0.6

- 1. Introduction
- 2. Concepts
- 3. Methodology
- 4. Main results
- 5. Concluding remarks

5. Concluding remarks: Main conclusions

- SSC and PIT together smooth 7% of output fluctuations and 11% of private consumption fluctuations induced by a shock as the one that hit the Italian economy in 2012.
- Effect is largest for PIT and smallest for SSCee.
- Higher employee tax progressivity and higher share of liquidity constrained households significantly increase the degree of smoothing of AS.

5. Concluding remarks: Next steps

- Extend analysis to France, Germany and Spain.
- Further develop link between QUEST and EUROMOD by using EUROMOD data to calibrate share of liquidity constrained households in QUEST.
- Investigate the role of benefits as AS, particularly unemployment benefits.
- Study transition path to new steady state in QUEST.

Thank you for your attention!