

EUROMOD help file

JRC-EUROMOD team

2023

This publication is a Scientific Information Systems and Databases report by the Joint Research Centre (JRC), the European Commission’s

science and knowledge service. It aims to provide evidence-based scientific support to the European policymaking process. The scientific
output expressed does not imply a policy position of the European Commission. Neither the European Commission nor any person acting
on behalf of the Commission is responsible for the use that might be made of this publication. For information on the methodology and

quality underlying the data used in this publication for which the source is neither Eurostat nor other Commission services, users should
contact the referenced source. The designations employed and the presentation of material on the maps do not imply the expression of
any opinion whatsoever on the part of the European Union concerning the legal status of any country, territory, city or area or of its

authorities, or concerning the delimitation of its frontiers or boundaries.

Contact information

Name: JRC-EUROMOD Team
Address: Edificio EXPO, c/ Inca Garcilaso 3, E-41092 Sevilla
Email: JRC-EUROMOD@ec.europa.eu

Tel.: +34 9544 88713

EUROMOD website: https://euromod-web.jrc.ec.europa.eu

EU Science Hub: https://joint-research-centre.ec.europa.eu/index_en

JRC132634

Seville: European Commission, 2023

© European Union, 2023

The reuse policy of the European Commission is implemented by the Commission Decision 2011/833/EU of 12 December 2011 on the
reuse of Commission documents (OJ L 330, 14.12.2011, p. 39). Except otherwise noted, the reuse of this document is authorised under
the Creative Commons Attribution 4.0 International (CC BY 4.0) licence (https://creativecommons.org/licenses/by/4.0/). This means that

reuse is allowed provided appropriate credit is given and any changes are indicated. For any use or reproduction of photos or other
material that is not owned by the EU, permission must be sought directly from the copyright holders.

How to cite this report: JRC-EUROMOD team, EUROMOD help file, European Commission, Seville, 2023, JRC132634

mailto:JRC-EUROMOD@ec.europa.eu
https://euromod-web.jrc.ec.europa.eu/
https://joint-research-centre.ec.europa.eu/index_en
https://creativecommons.org/licenses/by/4.0/

EUROMOD Basic Concepts
What is EUROMOD?
EUROMOD is a tax-benefit microsimulation model for the European
Union that enables researchers and policy analysts to calculate, in a
comparable manner, the effects of taxes and benefits on household
incomes and work incentives for the population of each country and
for the EU as a whole. Cross-country comparability is enabled by
coding the policy systems of the EU Member States according to a
common framework based on a standard set of modelling
conventions. The EUROMOD platform is highly flexible but also
organised, documented, validated and transparent. Underpinning the
model is the purpose-built software comprising a user-friendly
interface, supplemented by extended functionalities (plugins and
add-ons) for special purpose analysis. The software is used in many
country-specific models around the world.
Originally maintained, developed and managed by the Institute for
Social and Economic Research (ISER) of the University of Essex,
since 2021 EUROMOD is maintained, developed and managed by
the Joint Research Centre (JRC) of the European Commission, in
collaboration with Eurostat and national teams from the EU
countries. The model is open source since December 2020 (before
December 2020 it was open access), with an increasing number of
users across Europe and beyond. There are now several hundred
active users from a range of institutional backgrounds, helping bridge
the gap between academic research and policymaking.
For an overview of EUROMOD and its main features and uses, you
can watch a couple of videos (here and here) recorded by ISER in
2019, before the full transfer of the model to the JRC.

What can EUROMOD do?
EUROMOD can be used in many different ways in different contexts.
Examples include:

https://euromod-web.jrc.ec.europa.eu/sites/default/files/2022-02/Modelling_Conventions_Y13_20220203.pdf
https://euromod-web.jrc.ec.europa.eu/overview/extended-functionalities
https://www.microsimulation.ac.uk/euromod/models/
https://www.microsimulation.ac.uk/
https://euromod-web.jrc.ec.europa.eu/access-euromod
https://www.youtube.com/watch?v=yVBTX2dA0O4
https://www.youtube.com/watch?v=d3boUjcLaO0

Standard

Estimation of poverty, inequality and redistribution statistics
under actual conditions, previous or future tax-benefit rules
Budgetary effects
Effects of simple tax-benefit policy reforms (or illustrative
changes to household composition and original income)
"Model family" calculations
Indicators of work incentives

More advanced

Complex policy reforms (e.g. effects of revenue-neutral changes
to tax rates and social insurance regulations)
Policy swapping between countries (i.e. effects on country A of
adopting a policy measure currently effective in country B)
Generation of budget sets as input to labour supply or other
models of behaviour change Generation of counterfactual
income to answer "what if" questions Assessing effects and
costs of EU-wide policy reforms.

Data imputation

Generation of gross income (by source) from net, or vice versa

For further information see https://euromod-web.jrc.ec.europa.eu/.

https://euromod-web.jrc.ec.europa.eu/

EUROMOD input and output
EUROMOD output is essentially based on two inputs:

a. household micro-data and
b. EUROMOD parameters, which store rules on how to calculate

taxes and benefits

Using these two information sources the model calculates all taxes
and benefits that lend themselves for simulation. For example the
income tax is calculated by taking the income the tax is based on
from the dataset and applying the tax rules stored in the EUROMOD
parameters, e.g. the tax schedule, on this base. These calculations
are carried out for each household in the dataset and the result is
written to a micro-output file. The output is at the individual level. It
should however be taken into account that some of the results, for
example family benefits, only make sense on household or family
level. In such cases the benefit is usually assigned to the head of the
assessment unit.
The main output of the model - disposable income for each
household in the dataset - is made up of elements taken from the
survey data - basically earnings and original income from other
sources, as well as taxes and benefits that are not simulated -
combined with taxes and benefits that are simulated by the model.
The most common reason for not simulating a tax or benefit is lack
of information, e.g. most pensions cannot be calculated by the model
as the datasets usually do not contain information on past
contributions to the pension system.
For each country implemented in EUROMOD there are:

a. one or more dataset(s), i.e. survey data collected in different
years and

b. one or more system(s), i.e. tax-benefit rules for different policy
years.

Ideally, to calculate taxes and benefits for the year 2010 one would
use the 2010 policy rules together with data referring to the year
2010. However, corresponding data is not always available and even
if so, preparing and integrating new data in the model is a very
laborious task. Therefore datasets are used for simulating several
policy years, by up-dating monetary values to the corresponding
policy year. Usually, for each system there is a dataset that is most
suitable, normally the one whose collection year is nearest to the
policy year. These optimal system-dataset combinations are referred
to as best match. The EUROMOD run dialog shows which data and
systems can be combined and which of these combinations are
optimal. For further information on the EUROMOD run dialog and
how to produce output with EUROMOD see Working with
EUROMOD - Running EUROMOD.
EUROMOD stores its output in text files. As a default a standard
output file is produced, which is called cc_YYYY_std.txt. cc stands
for the country short name and YYYY stands for the tax-benefit year,
e.g. hu_2010_std.txt if the output is based on the 2010 rules of the
Hungarian tax-benefit system.
The output contains:

identification numbers, household identifier (idhh), person
identifier (idperson), identifiers of parents (idmother, idfather)
and partner (idpartner)
sample weight (dwt), which is the same for all household
members
demographic information, e.g. age (dag), gender (dgn), level of
education (dec), economic status (les), etc.
monthly original income (ils_origy)
monthly disposable income (ils_dispy)

other important aggregates on monthly basis, e.g. taxes
(ils_tax), benefits (ils_ben), employee, employer and self-
employed social insurance contributions (ils_sicee, ils_sicer,
ils_sicse), earnings (ils_earns), public pensions (ils_pen), etc.
several other informative variables (simulated or taken from
data, demographic or monetary) and monetary aggregates
possibly information on special assessment units, e.g. the inner
family, (HeadID, IsDependentChild, IsParnter, etc.)

EUROMOD Country Reports document the way in which each
country's tax-benefit system is modelled, i.e. the EUROMOD
parameters. For further information see https://euromod-
web.jrc.ec.europa.eu/resources/country-reports.
Moreover, some simple statistics showing the redistributive effects of
taxes and benefits in the EU, calculated by EUROMOD, can be
viewed here: https://euromod-
web.jrc.ec.europa.eu/resources/statistics.

https://euromod-web.jrc.ec.europa.eu/resources/country-reports
https://euromod-web.jrc.ec.europa.eu/resources/statistics

The EUROMOD user interface
The EUROMOD user interface is the central accession point of the
model. Its purpose is to help users to orientate themselves within the
options provided by the model and around the model.
The user interface's main window shows the following components:

The ribbon Countries is filled with flags for the implemented
countries. The flags can be clicked to access the EUROMOD
parameters of the respective country. EUROMOD parameters
store the information the model needs for its calculations. How
the user interface presents this information is explained in
Presentation of countries' tax-benefit-systems.
The button Run EUROMOD left of the ribbon Countries opens
the EUROMOD run dialog, which is explained in Working with
EUROMOD - Running EUROMOD.
The ribbon Display provides different tools to facilitate the
visualization of the spine. These dialogs allow for:

displaying a single policy or the full spine,
highlighting with colours (see section Working with
EUROMOD - Formatting),
setting bookmarks, etc.

The ribbon Country Tools enables access to a number of
dialogs, which support working with a country's parameters.
These dialogs allow for:

configuring country settings (e.g. name, short name),
system settings (e.g. currency, exchange rate to Euro) and
the input datasets which can be used for simulating the
country's tax benefit system (see section Working with
EUROMOD - Changing Countries' Settings),

offer a number of search tools, which - besides allowing for
standard searching and replacing - facilitate finding errors
and assessing if and where certain EUROMOD
components (e.g. variables) are used in the respective
country's parameters (see section Working with EUROMOD
- Searching),

The ribbon Administration Tools enables access to dialogs
which allow for:

adding and deleting of countries and Add-Ons (see Working
with EUROMOD - Adding countries and Working with
EUROMOD - Deleting countries),
administrating EUROMOD's variables, global extensions,
HICP and exchange rates. (see Working with EUROMOD -
Administration of EUROMOD variables),
generating EUROMOD public versions (see Working with
EUROMOD - Generating a EUROMOD public version).

The ribbon Add-Ons is filled with icons for the available
EUROMOD add-ons. The icons can be clicked to access the
implementation of the respective add-on. The presentation of
add-on implementations is equal to the presentation of country
implementations and can therefore be looked up in Presentation
of countries' tax-benefit-systems. For more information on add-
ons and an example see EUROMOD Functions - EUROMOD
add-ons and the special functions AddOn_Applic,
AddOn_Pol,AddOn_Func and AddOnPar.
The ribbon Applications enables access to a number of tools,
which allow for analysing the EUROMOD output, respectively
preparing the EUROMOD input (see section Working with
EUROMOD - Applications). They comprise:

a tool for generating simple summary statistics,
a tool for generating hypothetical input data.

The ribbon Help & Info provides help and relevant information
such as the EUROMOD version in use, and the End-User
Licence Agreement.
The main menu left of the Run EUROMOD button contains
functionalities like saving countries' parameters, opening
projects, changing configuration, as well as exiting the
programme. These functionalities are described at appropriate
points in the section Working with EUROMOD.

Presentation of countries' tax-benefit-
systems
Loading countries
Clicking a flag in the user interface's Countries ribbon opens
EUROMOD's representation of the respective country's tax-benefit
system. The country's name and flag is shown right next to the Run
EUROMOD button, to indicate which country is loaded. Further
countries can be loaded by clicking their flags.Each country is
represented in its own window and one can switch between these
windows by again clicking the respective flag or via the Windows
taskbar.

The EUROMOD spine
The main part of the window displays the representation of the
country's tax-benefit system - at the time of opening in a collapsed
state. Thus it shows what in EUROMOD lingo is frequently referred
to as the spine. The EUROMOD spine is the list of policies worked
off in sequence when the model performs its calculations. The term
policies refers as well to policies in a narrow sense, i.e. benefits and
taxes, as to special EUROMOD policies. These special policies for
example define which variables are contained in the output. See
Special EUROMOD policies below for further information. Each row
of the spine represents one policy.

EUROMOD policies, functions and parameters
Expanding a policy by clicking the little triangle button left of the
policy's name allows viewing the implementation of the policy. A
policy is implemented by so-called functions. Each EUROMOD
function is a self-contained building block that has its own
parameters and represents a particular component of the respective
policy. A typical social assistance benefit may for example be
implemented by a function that determines eligibility for the benefit
and a function that calculates the benefit amount for all eligible units.

In fact these two functions: a function that determines
eligibility/liability for benefits/taxes in a very general way and a
function that calculates a wide range of benefits/taxes are the two
most frequently used functions in EUROMOD. The purpose of using
functions as building blocks of the model is to provide a general
structure, which can be seen as using a standardised language to
describe policy instruments. Once EUROMOD users are
accustomed to this language, their understanding of other (foreign)
countries' benefits and taxes, and how they are implemented in
EUROMOD, improves considerably. The parameters of a function
can be viewed by expanding it using the little triangle button left of its
name. The section EUROMOD Functions gives a detailed
description of EUROMOD functions, including their use, the specific
behaviour and the parameters they provide to guide this behaviour.
Expanded policies and functions can be re-collapsed by the little
minus buttons. Note that the policy and function worked on is
displayed in the status bar.

EUROMOD systems
The changes of a country's tax-benefit system over time are
captured by EUROMOD systems. A EUROMOD system either
reflects the tax-benefit rules for a specific policy year (assuming
annual adaptations of tax-benefit rules) or the rules for an actual
(planned) or imaginary reform scenario. The columns of the
country's view represent these EUROMOD systems. Thus the value
of a specific parameter (e.g. the rate of a particular tax band) for
specific systems is defined at the intersection points of the
parameter's row and the respective systems' columns (e.g. may take
the value of 10% for the 2009-system and the value of 11% for the
2010-system).
The fact that policy reforms are not always as simple as changing
the value of a specific parameter is taken into account by so called
switches. The intersection points of policies and functions with the
systems represent these switches, i.e. they allow to switch policies
and functions on or off dependent on the system. The switches also

provide the settings n/a, standing for not applicable. More detailed
explanations of these settings can be found in the section
EUROMOD Functions - Common Parameters.

Special EUROMOD policies
As mentioned above, the EUROMOD spine comprises policies,
which do not describe e.g. a tax or benefit. Instead they implement
definitions, which are necessary for the model's calculation.

The policies ILDef_cc, IlsDef_cc and IlsUDBDef_cc contain
definitions of so called incomelists. Technically an incomelist is
the aggregate of several variables, which are added or
subtracted to build the aggregate. The term "income"list
indicates that the most common applications of this (important
EUROMOD) concept are income definitions, for example
disposable income, taxable income, etc.
The policy TUDef_cc contains definitions of assessment units,
which are in EUROMOD sometimes referred to as tax units (and
are another important EUROMOD concept). Many taxes and
especially benefits do not concern single individuals, but refer to
bigger units, for example some sort of family definition.
Assessment units allow for such definitions by specifying who
belongs to the unit, who is a child, etc.
Datasets are usually used for implementing several systems, by
up-dating monetary values to the corresponding year. The policy
Uprate_cc contains such up-dating of monetary dataset
variables.
The policies output_std_cc and output_std_hh_cc contain the
specification of standard output on individual and household
level (see section EUROMOD Basic Concepts - EUROMOD
input and output).

The listed policies are standard, that means they are implemented
for each country contained in EUROMOD. Some countries contain

further special policies like for example ConstDef_cc, which defines
basic values, which are used all over the implementation, e.g.
minimum income amount, pension age, etc.
Technically there is no difference between special policies and
standard policies, both use functions for their implementation and
both need to be listed in the spine to be performed. Thus calling
them special is just a matter of better comprehensibility. Moreover,
the functions, which are in principle dedicated for the implementation
of a special policy, like the function DefIL for the policy ILDef_cc, can
be used in any other policy as well, if this seems appropriate.

EUROMOD terminology
The following index provides a brief description of some important
EUROMOD specific terms and concepts.

EUROMOD system
The term system refers to the rules necessary to simulate a
particular tax-benefit system. It may refer to an existing tax-benefit
system (e.g. the DK tax-benefit rules for 2020) or to a reform
scenario.

EUROMOD parameters
EUROMOD parameters contain the information the model needs to
produce its output. Essentially they describe the tax-benefit systems
of the implemented countries. They are stored in XML files (two for
each country). Moreover, there are some common XML files, storing
for example information about EUROMOD variables.

EUROMOD spine
EUROMOD spine is a term describing the list of taxes and benefits
calculated by EUROMOD and the order in which they are processed.

EUROMOD assessment unit (tax unit)
The implementation of countries' tax-benefit systems usually
requires assessment units. The smallest EUROMOD assessment
unit comprises a single individual while the largest comprises the
whole household. Some policy instruments, e.g. child benefits,
require something in between, e.g. a family definition. EUROMOD
assessment units also contain definitions of e.g. who is a dependent
child, who is the head of the unit, etc. In EUROMOD lingo
assessment units are frequently (and sloppily) referred to as tax
units.

EUROMOD incomelist

EUROMOD incomelists are definitions of income concepts (e.g.
disposable income) used within the tax-benefit system of a particular
country. Technically an incomelist is the aggregate of several
EUROMOD variables and possibly other incomelists. These
components (in rare cases fractions or multiples of them) are either
added or subtracted to build the aggregate. The term "income"list
indicates that the most common applications of the concept are
income concepts, for example disposable income, taxable income, ...

EUROMOD policy
EUROMOD polices describe the implementation of particular taxes
(contributions) or benefits of a country. Usually there is one policy for
each tax or benefit. Polices are composed of EUROMOD functions.
Apart from polices describing taxes and benefits, there are special
polices, which define for example assessment units, incomelists or
the content of output files.

EUROMOD function
EUROMOD policies are broken up into EUROMOD functions, which
represent a particular component of the policy. As a (typical)
example, a benefit policy may consist of a function that determines
eligibility for the benefit and a function that calculates the benefit
amount for all eligible units. The purpose of using functions as
building blocks of the model is to provide a general structure, which
can be seen as using a standardised language to describe policy
instruments.

Standard output
As a default EUROMOD produces an output text files for each
simulated system. This standard output file contains one row for
each person listed in the input data, comprising some identification
and demographic variables taken from the input data, as well as
variables and incomelists calculated by the model, most essentially
EUROMOD standard disposable income.

EUROMOD standard disposable income

In general the following components make up disposable income in
EUROMOD (for each country and system): original income
(essentially employment and self-employment income; capital,
property and investment income; private pensions and transfers)
plus benefits (cash transfers, essentially unemployment benefits,
public pensions, family benefits, social transfers, other (country
specific) cash transfers) minus direct taxes (essentially income tax,
capital tax, other (country specific) direct taxes) minus social
insurance contributions. As this income concept is standardised as
far as possible over the countries implemented in the model it is
referred to as standard disposable income (and defined in the
incomelist ils_dispy).

EUROMOD variables
EUROMOD knows four types of variables: 1) variables contained in
input data, 2) variables simulated by the model (marked with the
postfix _s), 3) intermediate variables and 4) special purpose internal
variables. Variables of type 1 and 2 are described in a special
EUROMOD parameter file, the variable description file. Variables of
type 3 are defined by using special EUROMOD functions (DefConst,
DefVar). Variables of type 4 are produces internally by the model to
fulfil specific functionalities, an example is the loop counter of the
EUROMOD looping functions (Loop, UnitLoop).

Best match
The term best match describes an optimal system-dataset
combination, as there is sometimes more than one possibility to
simulate a system. For example, if the Belgian 2006 system can be
simulated either by using data with income year 2005 or data with
income year 2006, the combination 2006 system / 2006 dataset
constitutes the best match. EUROMOD good practise however
suggest setting the best match flag only for baselines, which are
explained in the next paragraph.

Baseline

Baseline is usually the term used for a system-dataset combination,
which fulfils the best match criterion as described above. In addition
however, the system must refer to an actual policy year and the
system-dataset combination must be the main or default
implementation for the respective policy year. To understand this,
assume a country for which three implementations for the policy year
2013 exist: (A) is using SILC data with income year 2013, (B) is
using a national data source, also with income year 2013, while (C)
is using the same data as (A), i.e. SILC data, but implements a
reform scenario. Though each of the three systems is in line with the
description of "best match", i.e. all use data with 2013 income, only
(A) is called a baseline: (B) does not fulfil baseline criteria as it is not
using the standard EUROMOD data source and (C) is not referring
to an actual policy year. It must however be mentioned, that the term
baseline is not a very clear definition, thus it could for example be
used for (B) if a reform scenario exists, which also uses the national
data source, in order to denote that (B) is the base scenario for the
reform.
What concerns good practise in labelling a system-dataset
combination as best match, only (A) should be labelled as such.
Doing so allows for distinguishing between the EUROMOD core
implementation and other developments. In the example, (B) does
not belong to the core as it is a special development for a certain
country, where some alternative data source can be used (for
whatever reason). (C) is a reform scenario and therefore obviously
not part of the core.

Working with EUROMOD

Running EUROMOD
To run EUROMOD open the run dialog by clicking the Run
EUROMOD button in the left top corner of the user interface.[1]

Viewing and selecting systems to run
The main part of the dialog is formed by a list of systems which are
ready to run. The content of this list depends on where the dialog
was opened. Whereas, if the button is pressed in a specific country,
the systems of this country are displayed. This selection can
however be changed via the ribbon bar, showing all countries. The
country/ies whose systems are currently listed are marked by a light
blue background. To select a country, i.e. to list the country's
systems, just click it. Vice versa click a selected country to unselect
it, i.e. to not any longer list its systems.[2]
To select a system for running check the tick-box left of the system.
Note that some systems may be marked with red colour. These are
systems that are set as private. Before however, you may want to
determine the dataset which is applied for running the system. For
this purpose the system list provides a combo-box for each system,
which contains all available datasets. As a default these boxes show
the best matching datasets (see EUROMOD Basic Concepts -
Terminology). It is however possible to choose another dataset by
selecting it from the list.[3]
The purpose of the button groups left of the Run button is to facilitate
the selection of many countries and/or systems. The two top-most
buttons allow for the selection of all respectively no country. The two
buttons in the middle select respectively unselect all displayed
(ordinary) systems for running. Finally the two buttons on the bottom
select respectively unselect all displayed add-on systems for
running.

Selecting the output path

The field Output path at the bottom of the dialog defines the folder
where the model writes its output to. As a default the field shows the
output folder defined via the main menu's item Open project (see
Working with EUROMOD - Open project). The folder can be
changed by clicking the folder button right of the field and selecting
the folder via a dialog, or by typing. Please note that the output folder
must exist, otherwise EUROMOD issues an error message.

Running the selected system-dataset combinations
Once the respective system-dataset combinations are selected,
clicking the button with the green arrow in the ribbon bar starts
EUROMOD's calculations. An info-window appears, which informs
about the progress and allows for some manipulation. The window
lists all system-dataset combinations selected for running and shows
their status: running, queued, finished or aborted (either by the user
or due to an error). Once a run is started, its starting time is
displayed, and once it is finished (or aborted), the finishing time is
indicated as well, together with the time taken.
Moreover, there are three buttons for each run. The Stop button
allows for aborting the run. Once a run is started, the Run Log button
is activated. If it is clicked, the field below the list of runs shows
progress information. If a run produces an error (stopping the run) or
a warning (allowing to continue the run) the Error Log button is
activated. Clicking the button shows the run's warnings and/or errors
in the field below the list of runs. Note that the content of this field is
determined by the most recently clicked button - its heading
indicates what is currently displayed.
Note that the info-window will stay open until it is closed by the user,
even if all runs are finalised, to allow checking possible error logs,
respectively inform about the times taken. If the user closes the
window before all runs are finished, (after a respective warning) the
still active runs are aborted and the queued runs are taken from the
queue. To hide the window, use the minimise button.

Also note that, apart from the output files, the model produces a
header file, which contains one row of information for each run. The
information includes: System (e.g. es_2019); Database
(es_2017_a3.txt); EUROMOD-Version (e.g. euromodfiles_i1.66);
Software-Version (e.g. 3.2.3); Executable-Version (e.g. 1.6); Start
(e.g. 17 Jan 2020; 14:45:01); End (e.g. 17 Jan 2020; 14:45:29);
Duration (e.g. 27.8580001s); Outputfile(s) (e.g.
c:\euromod\euromodfiles\output\es_2019_std.txt); Currency (e.g.
euro); Exchangerate (e.g. 1).
In addition there is one "column" for each extension available for any
of the runs. For example:
BTA_? UAA_? PBE_*
1 0 0
1 0 -1
A value of 1 means that the extension was on for the run, 0 means
off. -1 means not available.[4]
The name of the header file is
yyyymmddhhmm_xxxxxxxxxxxxxx_EUROMOD_Log.txt (e.g.
20221212102923_d8c50fc0c66b41d6aeabce99c333c941_EUROM
OD_Log.txt).
The information about warnings or errors, if any, is saved in the
same header file described above under the title ERROR-LOG.

Limiting the displayed datasets and systems
The ribbon View / Filter / Add-Ons provides options to limit the
datasets and systems displayed.
If the field Filter Datasets contains a selection criterion the datasets
offered for selection are limited to those whose name matches the
criterion. The selection criterion may use * (for any letter) and ? (for
one arbitrary letter). For example, with the selection criterion set to
2009 only 2009 datasets, with the selection criterion set to *200?
only datasets from 2000 to 2009 are listed.[5]
If the field Filter Systems contains a selection criterion the systems
displayed are limited to those whose name matches the criterion. As

for datasets the selection criterion may use * (for any letter) and ?
(for one arbitrary letter).
If the checkbox Best Match Only is activated, only systems with a
best matching dataset are displayed. Moreover, the combo-box with
datasets lists (the usually unique) best matching dataset(s) only. For
information on the "best match" criterion see EUROMOD Basic
Concepts - EUROMOD terminology.
If the checkbox Regular Expression is activated, then the two fields
Filter Datasets and Filter Systems will be treated as regular
expressions. Regular Expressions are more complex to define, but
allow for much more advanced filters. You can find a full description
of how Regular Expressions work here:
https://en.wikipedia.org/wiki/Regular_expression#Basic_concepts.
The fact that a(ny) filter or Best Match Only is set is indicated by a
respective image appearing and by red colour.

Limiting the output to selected households
If the box Show selected HH options in the ribbon View / Filter / Add-
Ons is checked, two additional columns are displayed in the system
list: First HH-ID and Last HH-ID. They allow for limiting the output
from the whole set of households contained in the input data to the
households with household IDs (idhh) equal to or larger than First
HH-ID and equal to or smaller than Last HH-ID.[6]

Running add-on systems
The section View Add-Ons in the ribbon View / Filter / Add-Ons
provides a list with available EUROMOD add-ons. If one or more
add-ons are selected, additional run-checkboxes are displayed in the
system list (one for each add-on[7]). Depending on whether the add-
on is available for the system, these boxes are enabled for selection
or not. Note that add-on-systems can be run independent of
standard tax-benefit calculations. For more information concerning
add-ons see EUROMOD Functions - EUROMOD add-ons and the

https://en.wikipedia.org/wiki/Regular_expression#Basic_concepts

special functions AddOn_Applic, AddOn_Pol, AddOn_Func and
AddOnPar.[8]

Advanced settings
The ribbon Advanced Settings allows for configuring some advanced
options with respect to the model run:[9]
Do not stop on non-critical errors: Checking this box effects that
the model does not stop on non-critical errors. Note that it still stops
on critical errors. For more detailed information see Working with
EUROMOD - Finding errors.
Add date to output-filename: Checking this box effects that
yyyymmddhhmm is added to the name of the standard output file.
For example, if the run of the Spanish 2011 system starts on 11
October 2011 at 12:10, the standard output file is called
es_2011_std_201110111210.txt. This option allows to avoid
overwriting the output with each model run. Moreover, the header file
produced with each model run has the same ending
(yyyymmddhhmm), thus a direct link between header file and
corresponding output files is generated.
Close dialog after run: Checking this box effects that the Run
EUROMOD dialog is closed after launching the programme. This
box is checked by default.
Do not pool system's datasets: Checking this box forces each
system-dataset combination to be shown in a separate row.[10] This
(longer and less concise) listing has the advantage that a single
system can be run with different datasets more conveniently. To
avoid, that the output of a systemX-datasetA combination is
overwritten by the output of a systemX-datasetB combination (as the
name of the default output file is the same), the output is arranged in
folders named after the datasets. That means there would be one
folder named after dataset A, containing systemX output produced
with dataset A and one folder named after dataset B, containing
systemX output produced with dataset B.

Run public components only: If this box is checked, any private
policies, functions or parameters are ignored, i.e. the result is the
same as if they did not exist. Please note that ticking the box does
not hide any private systems or datasets (for performance reasons).
Do not show hidden systems: If this box is checked, systems
which are hidden in the country view are not listed (i.e. offered to
run). The default value is false, i.e. hidden systems are offered to
run.
Warn about useless groups: If this box is checked, the executable
generates warnings about unnecessary group-numbers in the group
column.
Parallel runs: This field indicates how many instances of the
EUROMOD executable run in parallel. For example, if parallel runs is
set to three and five systems (using different datasets) are selected
for running, three runs are started immediately, while the remaining
two runs are queued. By default this option is set to "Auto" in which
case the application will automatically determine the most efficient
number of parallel runs based on the number of available CPU
cores.

Switching extensions on or off
The section Extensions in the ribbon View / Filter / Add-Ons provides
a number of checkboxes, which allow for switching on or off certain
parts of the EUROMOD calculations. Checking, for example, the box
Tax Compliance Adjustments extends the list of systems by a
column, which provides a button for each system. These 'switch
buttons' are captioned by either on or off.
An on button indicates that correction for tax compliance is part of
the system's calculations. If users want the model to omit these
calculations (i.e. see what happens if everybody adheres the rules of
tax legislation) they can do so by clicking the on button - this
changes the caption of the button to off, indicating that the next
model run will not carry out the parts of calculation, which correct for

tax compliance. The same applies for the other checkboxes, thus
allowing e.g. taking (not) into account benefit non-take-up, etc.
Moreover a switch button may be captioned by on (default) or off
(default). This indicates that the current setting is the default, i.e. if
the switch button for tax evasion is captioned by on (default) for a
system means that usually tax evasion is part of the system's
calculations. The button Restore Defaults left of the checkboxes for
viewing extension switches allows for setting all switches back to
their defaults. Alternatively a user may use the context menu (mouse
right-click) in any extension switch column to change the switch for
all systems to on, off or the default value of each system. For more
information on how this is accomplished technically see Working with
EUROMOD - Changing Countries' Settings - Extensions.
Clicking a switch button opens a context menu, which does not only
allow for switching extensions on or off, but also provides the option
all. If this option is selected the respective system is run twice: once
with the extension switched on and once with the extension switched
off.
To prevent overwritting the standard output-file the Auto-Rename-
option is activated for this system (see description of the Auto
Rename-feature below).
Furthermore a button may also show no caption. This means that the
extension is not switchable, because the country (or system) may
not foresee respective calculations. For example, correction for tax
compliance may not be implemented for Denmark or it may just not
be implemented for the Danish 2009 system. Again, for more
information on how this is accomplished technically see Working with
EUROMOD - Changing Countries' Settings - Extensions.
As the possibility to display more than one such button column
suggests, it is possible to combine different settings, e.g. taking (not)
into account tax compliance as well as benefit take-up.
Extension-switch-settings are not only system specific, but in fact
system-dataset-combination specific. System specificity implies that
the caption of the buttons may be different amongst the systems of a

country. Dataset specificity means that a system's button may
change if another dataset is selected.
The user interface remembers users' settings of switch buttons. That
means if a user for example changes a switch button from on
(default) to off and then closes the run dialog or even the whole
interface, next time she opens the run dialog and displays the
respective column, the button will still be set to off.
Extension-switches do not only apply for 'ordinary' systems, but also
for add-on systems. That means one could for example calculate
marginal tax rates with tax evasion switched on or off.
If the switch buttons for an extension are not visible (because the
column is not displayed), the model always applies the default
settings, irrespective of any changes by the user. That means, to
avoid misleading results by forgotten extension-switch-changes,
changes by the user are only effective if she sees in the run dialog
that they are set. If the extension has not been set to a default value,
and if it is not visible in the run dialog, a warning will be displayed.
The On/Off-slider Auto Rename left of the button Restore Defaults
(in the ribbon View / Filter / Add-Ons) allows for automatic renaming
of the output file based on non-default extension-switch-settings. If
set to On, and if the output file name follows the default format (e.g.
xx_YYYY_std), it is automatically renamed to signify which switches
have been changed in the run dialog. Specifically, for each switch
that has a non-default value, an appropriate text will be appended at
the end of the filename, while the _std suffix is removed (e.g.
ee_2010_std can become ee_2010_btaoff_fyaon).
Finally it may be useful to know that the user interface passes the
extension switch settings to the executable via the configuration file
(see EUROMOD Installation and Architecture - EUROMOD software
(user interface and executable) - The configuration file).

[1] You may have to switch to the ribbon Countries, if the button is not visible.

[2] Note that this selection is preserved if the dialog is closed. If, you are for example
working with Ireland and for some reason also select UK systems to be shown and then
close the dialog, on the next opening (within the same EUROMOD session) UK as well as
Irish systems will be displayed. In this context note that the dialog is country specific, i.e. the
respective selection belongs to one country. In other words, if you then open Estonia, it still
shows only the Estonian systems and not the UK ones.

[3] If no best matching dataset is defined for the system the first best dataset is displayed.
Note that only systems with at least one dataset assigned are listed.

[4] This value can only occur if there is more than one run and the extension 'belongs' to
another run.

[5] Note that limiting datasets may also limit systems, as a system for which no dataset is
available will not be displayed.

[6] Note that the selection of households is database specific, i.e. if several systems are run
with the same dataset, the household limitation of the first system (if specified) is used,
limitations of other systems are ignored.

[7] To be precise, there may be more than one checkbox for each add-on as add-ons may
contain several systems. Thus there will be one checkbox for each add-on system.

[8] Technically running add-ons is accomplished as follows: The user interface reads all
AddOn_xxx functions and follows their instructions with respect to merging the add-on
system with the selected (base) system. The result of this merging is saved in the
temporary folder. Consequentially the user interface instructs the executable to run the
system from there.

[9] Note that these settings are stored with the local implementation of the user interface,
i.e. they are preserved and will be the same if the interface is closed and opened again.
Moreover, they are not country specific, i.e. if they are e.g. set for Bulgaria and afterwards
the run dialog is opened for Hungary, the "Bulgarian" settings are overtaken for Hungary.

[10] If for example, the system cc_yyyy can be run with datasets cc_yyy0_a1 as well as
dataset cc_yyy1_a1, it would usually be listed once with the two datasets selectable via the
combo-box (with the best match being preselected). If Do not pool system's datasets is
checked, there would be two rows: one for the combination of system cc_yyyy with dataset
cc_yyy0_a1 and one for the combination of system cc_yyyy with dataset cc_yyy1_a1.

[11] In this case, as usual, the switch in the country file is relevant. That means the policy
can be set "permanently" to on, off, toggle or n/a.

[12] More precisely it reports for all available policy switches, whether they are turned on or
off. If, for example, for a system Tax Compliance Adjustments as well as Benefit Take-up
Adjustments are switchable, the header file will report something like bta_??=on;tca_??=off,
independently of the fact whether the user has changes the switches or defaults were
applied. Whereas, if for a system only Tax Compliance Adjustments are switchable
(because Benefit Take-up Adjustments do not exist or are not switchable), the header file
will report something like tca_??=off.

Changing countries' tax-benefit-systems
The sub-sections of this section explain the different functionalities of
the EUROMOD user interface, which support implementing and
changing a country's tax-benefit systems in EUROMOD. The order
of sections is arbitrary and in general not based on each other.

Adding Systems
Adding a system via copy/paste
To add a system either click the Add System button in the ribbon
Country Tools or right-click the a(n existing) system's header to
select the menu item Copy/Paste System from the context menu.
This opens a dialog where you are asked to indicate the new
system's name. Note that the system's name must not contain any
other characters than letters, numbers and underscores. If any other
character is used or if the chosen name is equal to an existing
system's name, an error message is issued, and you are asked to
change the name. Clicking OK adds the new system.
Note that new EUROMOD systems are initially always a copy of an
existing system, as it is very likely that the new system can use an
already implemented system as template. For example, a country's
2012 system can be based on the already implemented 2011
system, as well as a reform scenario is usually based on an existing
system. Such a template system is usually referred to as the base
system. If the new country is added via the context menu of an
existing system, the respective system serves as the base system. If
the new country is added via the Add System button one will be
prompted a dialog allowing for the selection of the base system.
The new system is initially nearly a true copy of the existing system.
That means amongst others that the new system is automatically
configured to run with all datasets the base system is configured to
run with. The only difference between the base systems and their
copies are the names of standard output files. If the base system, for
example, is called sl_2010 it usually produces a standard output file
called sl_2010_std.txt. For the derived system, called for example
sl_2010reform, this name is changed to sl_2010reform_std.txt. For
more information on standard output see EUROMOD Basic
Concepts - EUROMOD input and output.

Note that the user interface offers the possibility to highlight the
differences between a base and a derived system, using background
and/or text colour. If the base system highlights differences to its own
base system, it inherits this feature to the new system. Also other
conditional formats are overtaken from the base system. For more
detailed information see Working with EUROMOD -
ConditionalFormatting.htm.

Adding the very first system
The context menu, which is opened on clicking the Policy column
offers the menu item Insert First System. This menu item is disabled
unless the country does not yet contain any system. Select the menu
item to open a dialog where you are asked to indicate the new
system's name and click OK to add the system. Note that the same
naming conventions are valid as explained above.

Renaming a system
To rename a system right-click the system's header to select the
menu item Rename System from the context menu. This opens a
dialog where you are asked to indicate the system's new name. Note
that the system's name must not contain any other characters than
letters, numbers and underscores. If any other character is used or if
the chosen name is equal to an existing system's name, an error
message is issued, and you are asked to change the name. Clicking
OK renames the system.
If the system contains standard output policies (for example the
system BG_2014 will usually contain the output policy output_std_bg
with the output file named BG_2014_std) you are asked whether the
standard output file(s) should be renamed. You can allow for this
action or refuse.
Moreover, if you change the year of a systems (e.g. rename
BG_2014 to BG_2015) you are informed that "... uprating-indices are
now updated in accordance with your changes to system-year". You
can refuse this action, but it is not recommended (see Working with
EUROMOD - Defining uprating factors).
Finally, you are informed that "... Add-Ons are not adapted to reflect
the new system name. Please change policy 'AddOn_Applic'
manually where necessary. ". You can avoid this warning for the next
time by ticking the option Do not reshow this warning (see Working
with EUROMOD - Configuration).

Deleting systems
To delete systems click the Delete System(s) button in the ribbon
Country Tools, which will prompt you a dialog allowing for selecting
the systems. Alternatively right click the system's header to open the
system context menu and select the menu item Delete System.
Answering the security query with Yes deletes the selected
system(s).

Cleaning systems
To clean-up your systems, select the ribbon Country Tools and click
the button Clean Up System. This will automatically search for
policies, functions and parameters that are set as n/a in all systems
and it will remove any and all such instances. Note that as this is an
action that cannot be undone, the user interface produces a backup
before starting the action, which can be restored via the button
Restore in the ribbon Country Tools. For more information see
(Working with EUROMOD - Backup - Restore).

Changing the left to right order of systems
The order of systems from left to right is changed by using drag and
drop, i.e. clicking a system's header with the left mouse button,
dragging the system with pressed mouse button to the new position
and dropping it there by releasing the mouse button. Note however,
that this new position is not permanent. This means that, if the
country is closed and opened again, the system will be back to its
old position, even if the country is saved.

Saving a new order of systems
To make a new order of systems permanent, click any system's
header to open the system context menu and select the menu item
Save System Order. Note that this change is initially only valid for
the current session (see Restore System Order below). To become
valid for further sessions the country must be saved.

Restoring the initial order of systems
One can restore the order of systems by right clicking any system's
header to open the system context menu and selecting the menu
item Restore System Order. The thus restored order is the order one
came upon when the country was initially opened, unless meanwhile
a new order was stored via Save System Order (see above), in
which case this order is restored.

The Hidden Systems Box
The system context menu's item Move To Hidden Systems Box ...
shows a couple of sub menu items[1], which provide options for
hiding and unhiding systems from the main view. These options are
helpful for reasons of manageability, for example if a reform scenario
is implemented and one wants to concentrate on this system and
maybe its base system.

Hiding Systems
Systems hidden from the main view are listed in the Hidden Systems
Box. This is a small window, which is displayed by clicking on the
Show Hidden Systems Box button in the Display ribbon or by
choosing the sub menu item Show Hidden Systems Box or by any of
the following sub menu items. Note that the term "selected system"
used below refers to the system that was right clicked to open the
system context menu.

Sub menu item Selected System: Selecting this option hides
the selected system.
Sub menu item All Systems But Selected: Selecting this
option hides all other systems, while only the selected systems
remains visible.
Sub menu item Select Systems ...: Selecting this option
provides a list of all visible systems and allows selecting them
for hiding. Note that clicking OK without selecting any system,
though not having any effect on system visibility, may still
(re)show the Hidden System Box (if it was closed via its close
box).
Using Drag and Drop: One can also hide systems by dragging
them into the Hidden System Box, i.e. clicking the respective
system's header with the left mouse button, dragging the system
with pressed mouse button over the Hidden System Box and
dropping it there by releasing the mouse button.

Unhiding Systems

Sub menu item Unhide all Systems: Selecting this options
reshows all hidden systems, i.e. the systems listed in the Hidden
System Box.
Using Drag and Drop: One can also unhide a system by
dragging it from the Hidden System Box to its old or any other
position (see Working with EUROMOD - Changing the order of
systems for more information with respect to the order of
systems).
Double clicking the system in the Hidden System Box: This
reshows the system and shows it as the last one, i.e. just left of
the comments column.

Note that the user interface draws the attention to any changes,
which could affect hidden systems. If for example a function is
deleted a warning will be issued, which asks you to "Please note that
the action will have effect on the hidden systems as well!". (See
Working with EUROMOD - Managing warnings for avoiding such
warnings.)

[1] These sub menu items are accessed by firstly right clicking a(ny) system's header to
open the system context menu and then moving the mouse over the menu item Move To
Hidden Systems Box

clbr://internal.invalid/book/EM_WW_ManagingWarnings.htm

Matrix view of incomelists
The "matrix view" of a system's incomelists shows a tabulate view of
this system's incomelists, where the headers of the columns contain
the names of the incomelists and the headers of the rows contain the
names of all variables included in any incomelist. The cells at the
crossing points contain the "contribution" of the respective variable to
the respective incomelist, e.g. 1, -1, 0.5, -0.5.
The view is opened by right clicking a system, to open its context
menu, and selecting the menu item Show Matrix View of Incomelists.
Another option to open the view is by clicking the button Show Matrix
View of Incomelists in the ribbon Display and selecting the
respective system from the appearing list.
Note that the window showing the matrix view of incomelists is non-
modal, that means the window can stay open while editing. Use
respective resizing, the minimise, maximise and close button to
position the window where it is convenient.

Selecting components and values
There are a number of operations which can be applied on several
components (policies/functions/parameters) or values. For example
one can delete a range of parameters in one go or copy the values
of several parameters.
For this purpose it is necessary to select the respective components
and/or values, respectively the corresponding range of cells in the
display. This is accomplished by selecting the first cell of the range,
and then pressing and holding the Shift key while selecting the last
cell of the range. Light blue back colour will show the selection.
The selected region can be 'manually' unselected by either pressing
the Escape-key or by selecting a cell outside the region. The
selection is also automatically cancelled by several other actions, in
particular actions, which cause (or risk causing) a 'broken' selection,
i.e. the selected cells are not placed in a single rectangle anymore
(also see below).

The following notes and hints may be useful in understanding how
selecting works:

The 'first' and 'last' cell of the selection (which are to be selected
by the user) build the top-left and bottom-right end points of the
selection, and the selection will contain all cells in between
them. It is however not necessary to select the top-left end point
first. In other words selecting from the cell in row A, column B to
the cell in row X, column Y leads to the same result as selecting
from the cell in row X, column Y to the cell in row A, column B.
The selection (and the related operation) does only concern
visible cells. Cells between the end points, which are hidden due
to collapsing or hidden columns, are not part of the selection.
Therefore, to avoid a 'broken' selection, any selection is
cancelled by collapsing or expanding.

Instead of using the mouse for selecting the first and last cell of
the selection the arrow keys (left, right, up, down) and the
position keys (page down, page up, etc.) can be used. The
selection starts when such a key is pressed together with the
Shift key and ends once the Shift key is released.

Adding Policies
Adding a policy
To add a policy, right-click on the name of the policy before (after)
which you want to insert the new policy. This opens the policy
context meny, where you select the menu item Add Policy Before
(Add Policy After). A sub menu opens, which allows choosing the
type of the new policy (benefit, tax, ...). Click the respective policy
type to open a dialog where you are asked to indicate the new
policy's name. Clicking OK adds the new policy. Note that the
policy's name must not contain any other characters than letters,
numbers and underscores. If any other character is used or if the
chosen name is equal to an existing policy's name, an error
message is issued, and you are asked to change the name.
Moreover, the policy name is by convention expected to end with an
underscore followed by the country's short name (e.g. _hu, _be, _uk,
etc.). If this is not the case the user interface asks whether it should
add this ending for you. You may answer this question with No to
use a non-standard policy name, it is however recommended to
answer with Yes.

Adding the very first policy
The system context menu (opened by right clicking any system's
header) offers the menu item Insert First Policy. This menu item is
disabled unless the country does not yet contain any policy. Select
the menu item to open a dialog where you are asked to indicate the
new policy's name and click OK to add the policy. Note that the same
naming conventions are valid as explained above.

Renaming a policy
To change the name of a policy right click its current name. This
opens the policy's context menu where you select the menu item
Rename Policy. A dialog opens where you are asked to indicate the

new name of the policy. Click OK to confirm the change. Note that
the same naming conventions are valid as explained above.

Deleting policies
Policies can be deleted by either using the context menu or via the
Delete-key. In both cases first select the policy/ies you want to
delete. Then press the Delete-key. Alternatively right click the name
of (one of) the policy/ies for opening the context menu and selecting
the menu item Delete Policy/ies.
A single policy is selected by simply clicking it (more precisely, its
name in the Policy column). A range of policies is selected by
selecting the first policy (i.e. its name in the Policy column), then
pressing and holding the Shift key while selecting the last policy. A
darker blue colour shows the selection. For a more detailed
description of how to select cells see Working with EUROMOD -
Selecting components and values.
Note that the selection needs to include the policy column (i.e. the
name(s) of the policy/ies). If only system columns and/or the group
or comment columns are selected, the interface assumes that the
respective values should be deleted - see Working with EUROMOD -
Changing parameters (paragraph Deleting (ranges of) parameter
values). Moreover, when using the context menu you need to right
click on the selection; otherwise you will be deleting the policy on
which you right clicked, not the selection.
A security question is issued before the policies are finally removed,
which hints especially to the attempt of deleting compulsory policies.

Changing the order of policies
There are three ways to change the order of policies: by using (a)
drag and drop, (b) Control + Up/Down keys or (c) the policy context
menu. For each of them first select the respective policies. A single
policy is selected by simply clicking it (more precisely, its name in the
Policy column). A range of policies is selected by selecting the first
policy (i.e. its name in the Policy column), then pressing and holding
the Shift key while selecting the last policy. A darker blue colour
shows the selection. For a more detailed description of how to select
cells see Working with EUROMOD - Selecting components and
values.
For (a) click the respective policy/ies with the left mouse button, drag
them with pressed mouse button to the new position and drop them
there by releasing the mouse button.
For (b) press the Control as well as the Up key to move the
respective policy/ies up, respectively the Control as well as the Down
key to move them down.
For (c) right click the name of (one of the) policy/ies for opening the
context menu and selecting the menu item Move Policy/ies Up
respectively Move Policy/ies Down.
Note that changing the order of policies invokes a warning, asking
"Are you sure you want to change the order of calculations?". See
EUROMOD Basic Concepts - Presentation of countries' tax-benefit
systems and EUROMOD Basic Concepts - Terminology for more
information on the EUROMOD spine and the consequences of
reordering policies. To avoid the warning see Working with
EUROMOD - Managing warnings.

clbr://internal.invalid/book/EM_WW_ManagingWarnings.htm

Copying policies
Copying policies within a country
To copy a policy right-click its name for opening the policy context
menu and selecting the menu item Copy Policy.
To paste the copied policy right-click the name of the policy before or
after which you want to insert the copy. From the policy context
menu select the menu item Paste Policy Before to place the copied
policy before the right clicked policy or Paste Policy After to paste
the copied policy after the right clicked policy.
A dialog appears which asks you to indicate the policy's name,
initially suggesting the template's name. Note however that you need
to change this name as there must not be two policies with the same
name. Moreover note the policy naming conventions explained in
Working with EUROMOD - Adding policies. Clicking OK adds a new
policy, which is initially (except the name) a perfect copy of its
template.

Copying policies from one country to another
Copying a policy to another country is in principle not different to the
approach described above, however after defining the name, a
dialog appears which allows the assignment of systems. To
understand this, consider a policy that is copied from a country with
three systems to a country with just one system: which system's
parameter values should be copied?
The dialog contains a table, which lists the system assignments,
where assignment means that the parameters of the destination
system are to be filled with the values of the source system. The left
part of each row shows a system of the destination country and the
right part indicates the assigned system of the source country. If the
destination country's system is not assigned to any system of the
source country, the right part of the table shows "Not Assigned". To
choose another system of the source country, just click the

respective cell, which opens a dialog that allows selecting the
system. Select no system for no assignment.
Clicking the button Clear Assignment removes all assignments
between destination and source systems, thus the table shows "Not
Assigned" for all destination systems. Note that, when it is first
opened, the dialog shows a default assignment, which tries to match
systems of the same policy year, e.g. SK_2021 with AT_2021,
SK_2022 with AT_2022, etc.
Clicking OK adds the policy as specified. If a system is not assigned,
parameter values are set to n/a.

Copying policies as a reference
The policy context menu also offers the menu items Paste
Reference Before and Paste Reference After. The case is as follows:
it may be necessary that a policy is calculated twice in the model
run. For example, social insurance contributions may need to be
calculated before income tax, as they are needed as an input,
however income tax may as well be needed as an input for social
insurance contribution calculations. A usual approach to solve such
a problem of circularity is to calculate contributions twice, before and
after income tax calculations. As the order of policies in the spine
determines the processing sequence of policies (see EUROMOD
Basic Concepts - Presentation of countries' tax-benefit systems and
EUROMOD Basic Concepts - Terminology for more information on
the EUROMOD spine and the order of policies) it would be
necessary to insert the policy calculating social insurance
contributions twice. Such a redundancy is however error prone as
changes need to be implemented in both policies, which is easy to
forget. A reference avoids this problem by being just an entry in the
spine with the same name as the respective policy but with the twin
symbol to denote it as a reference. The reference is just information
for the rerun of a policy and does not display any functions - to view
its definitions one has to refer to the "real" policy.

Technically inserting a reference works just like copying a policy, with
the difference that the menu items Paste Reference are selected
instead of Paste Policy. For obvious reasons it is not possible to
copy a policy in one country and paste a reference to it to another
country.

Setting policies, functions and parameters
private
To set a policy, function or parameter private, respectively to remove
this setting, right-click its name for opening the context menu and
selecting the menu item Set/Unset Private. If the
policy/function/parameter currently is set private, the menu item
shows a red dot (for policies and parameters) and fx letters in red
(for functions). In this case clicking the menu item removes the
private setting and the symbol takes on its usual colour. Vice versa, if
a policy/function/parameter is not private, the symbols show their
usual colour. In this case clicking the on Set/Unset Private installs
the private setting and changes the symbol's colour to red.
For further information concerning private components see Working
with EUROMOD - Generating a EUROMOD public version.

Changing policy view and jumping to a
specific policy
The user interface allows for two modes for viewing a country's tax-
benefit policies. The standard mode is "Full Spine View", that means
all policies are displayed. For reasons of clarity or to enhance
performance one may however prefer to view only one policy at
once, i.e. work with "Single Policy View". The ribbon Display
provides check-boxes allowing for changing between the two views.
If one changes from Full Spine View to Single Policy View, the single
policy displayed is the focused policy. Initially the policy is fully
expanded, that means all functions and parameters are displayed.
To select another policy click the Policy column's header with the left
mouse button. This opens a list of all policies, thus allowing for
selecting the required one. The user interface "remembers" this
policy during the session. That means if one switches back to Full
Spine View and then again back to Single Policy View the displayed
policy is the one displayed before the switches.
Working in Single Policy View is in principal not different from
working in Full Spine View. Just a few operations are not possible
and therefore deactivated. These operations include adding and
deleting policies and operations which work on the full spine (e.g.
importing/exporting systems).
Note that the list of all policies activated by a left mouse click on the
Policy column is also available in Full Spine View, where it serves to
jumping to the selected policy. This functionality may be handy if
many policies and functions are expanded.

Adding a function
To add a function to a policy right-click the name of the function
before (after) which you want to insert the new function. This opens
the function's context menu, where you select the menu item Add
Function Before (Add Function After). A submenu allows choosing
which function should be added.
This submenu is slightly different depending on the policy the new
function will be part of. For "normal" policies (e.g. benefits and taxes)
firstly the policy functions are listed (ArithOp, Elig, BenCalc, etc.),
followed by two submenus containing System Functions (DefConst,
DefIL, DefOutput, etc.) and Special Functions (Loop, Store, Totals,
etc.). For special policies (e.g. Output_std_cc or ILDef_cc) the list
starts with the function(s) associated with this policy (i.e. function
DefOutput in the case of policy Output_std_cc and function DefIL in
the case of policy ILDef_cc) followed by three submenus containing
Other System Functions (DefConst, DefTU, Uprate, etc.), Policy
Functions (ArithOp, Elig, BenCalc, etc.) and Special Functions
(Loop, Store, Totals, etc.). See EUROMOD Basic Concepts -
Presentation of countries' tax-benefit systems for further information
on special EUROMOD policies and EUROMOD Functions for further
information on idem.
Click the respective function to add the function itself as well as the
compulsory parameters of this function (e.g., for most functions,
TAX_UNIT and Ouput_Var).
Alternative to using the function context menu, the policy context
menu offers the menu item Add Function. Using this adds the
function as the very last function of the policy.

Deleting functions
Functions can be deleted by either using the context menu or via the
Delete-key. In both cases first select the function(s) you want to
delete. Then press the Delete-key. Alternatively right-click the name
of (one of) the function(s) for opening the context menu and
selecting the menu item Delete Function(s).
A single function is selected by simply clicking it (more precisely, its
name in the Policy column). A range of functions is selected by
selecting the first function (i.e. its name in the Policy column), then
pressing and holding the Shift key while selecting the last function. A
darker blue colour shows the selection. For a more detailed
description of how to select cells see Working with EUROMOD -
Selecting components and values.
Note that the selection needs to include the Policy column (i.e. the
name(s) of the function(s)). If only system columns and/or the group
or comment columns are selected, the interface assumes that the
respective values should be deleted - see Working with EUROMOD -
Changing parameters (paragraph Deleting (ranges of) parameter
values). Moreover, when using the context menu you need to right-
click on the selection; otherwise you will be deleting the function on
which you right-clicked, not the selection. In addition note that with
the context menu it is only possible to delete functions belonging to
one policy - use the Delete-key if you want to delete a wider range of
components.
A security question is issued before the functions are finally
removed. Note that you can opt to not show the security query
anymore - see Working with EUROMOD - Managing warnings.

clbr://internal.invalid/book/EM_WW_ManagingWarnings.htm

Changing the order of functions
There are three ways to change the order of functions: by using (a)
drag and drop, (b) Control + Up/Down keys or (c) the function
context menu. For each of them first select the respective functions.
A single function is selected by simply clicking it (more precisely, its
name in the Policy column). A range of functions is selected by
selecting the first function (i.e. its name in the Policy column), then
pressing and holding the Shift key while selecting the last function. A
darker blue colour shows the selection. For a more detailed
description of how to select cells see Working with EUROMOD -
Selecting components and values.
For (a) click the respective functions with the left mouse button, drag
them with pressed mouse button to the new position and drop them
there by releasing the mouse button.
For (b) press the Control as well as the Up key to move the
respective functions up, respectively the Control as well as the Down
key to move them down.
For (c) right-click the name of (one of the) functions for opening the
context menu and selecting the menu item Move Functions Up
respectively Move Functions Down.
Note that functions can only be shifted (up or down) within the policy
they belong to. That means, this way it is not possible to move a
function from one policy to another. It is however possible to copy a
function into another policy (see Working with EUROMOD - Copying
functions) and possibly (if the intention is to move the function)
delete the original function.
Also note that changing the order of functions invokes a warning,
asking "Are you sure you want to change the order of calculations?".
See EUROMOD Basic Concepts - Presentation of countries' tax-
benefit systems and EUROMOD Basic Concepts - Terminology for
more information on the EUROMOD spine and the consequences of

reordering functions. To avoid the warning see Working with
EUROMOD - Managing warnings.

clbr://internal.invalid/book/EM_WW_ManagingWarnings.htm

Copying functions within a country
To copy a single function right-click its name, which opens the
function's context menu, where you select the menu item Copy
Function(s).
To copy several functions, first select the respective functions, then
click within the selection to open the context menu providing the
menu item Copy Function(s). Note that the selection needs to
include the policy column and that the right-click must be performed
in the policy column as well. Moreover, note that only functions of
one policy can be copied at the same time - a warning is issued if the
selection does not fulfil this criterion. (For a description of how to
select functions see Working with EUROMOD - Selecting
components and values.)
To paste the copied function(s) right-click the name of the function
before or after which you want to insert the copy. From the context
menu select the menu item Paste Function(s) Before to place the
copied function(s) before the right-clicked function or Paste
Function(s) After to paste the copied function(s) after the right-
clicked function.
Also the policy context menu (opened by a right-click on the name of
a policy) provides the menu item Paste Function(s). Using this option
adds the copied function(s) at the end of the policy.

Copying functions from one country to another
Copying function(s) to another country is in principle not different to
the approach described above, however on pasting the function(s), a
dialog appears which allows the assignment of systems. For a
description of the dialog and its handling see Working with
EUROMOD - Copying policies, paragraph Copying policies from one
country to another. Clicking OK adds the function(s) as specified.

Displaying function specifiers
The ribbon Display provides a button Show Key Parameters.
Clicking this button shows an additional row below each functions'
name, displaying the "key parameter" of the function. For example
the row below a DefIL function shows the name of the respective
incomelist. More precisely it shows for example Name: ils_earns.
That means it indicates the name of the parameter hosting the key
parameter (parameter Name), followed by the parameter's value
(ils_earns). If the value of the parameter is not equal for all systems,
all values are displayed, e.g. Name: ils_earns, ils_earns_2008,
ils_earns_2012.[1]
For most of the functions the parameter output_var (respectively
output_add_var) constitutes the key parameter. Exceptions are the
functions DefIL and DefTU with parameter Name as key parameter,
the functions Uprate and SetDefault with parameter Dataset, the
function DefOutput with parameter File, the function Elig with
parameter Elig_Cond as well as some other less frequently used
functions. Some functions do not have a key parameter, as for
example functions DefVar and DefConst. For these functions no
additional row is displayed.
To hide the key parameters press the button Hide Key Parameters
(which is the Show Key Parameters button, which changed its name
while key parameters were displayed).
Note that this change of display affects all open countries, e.g. if key
parameters are displayed for Romania while Hungary is open too,
key parameters are displayed for Hungary as well.

[1] The information also takes care of the fact that specification parameters may appear
more than once, like e.g. the parameter Dataset for functions Uprate and SetDefault.

Presentation of (normal and) special
parameters
Each parameter is represented by one row in the spine. (See
EUROMOD Basic Concepts - Presentation of countries' tax-benefit
systems and EUROMOD Basic Concepts - Terminology for more
information on the EUROMOD spine and the order of policies and
functions.)

The Policy column of this row takes the name of the
parameter, for example Output_Var for the parameter taking the
name of the output variable of the respective function or LowLim
for taking a lower limit for the result of the function. In general
the Policy column is not editable. See Parameters with editable
parameter name below for an exception.
The Grp/No column is described in the paragraphs Group
parameters and Footnote parameters below.
The Comment column may contain a note or remark with
respect to this specific parameter.
The System columns, i.e. the columns between the Grp/No
and the Comment column, contain the value of the parameter
for each respective system. Parameter values range from
simple numbers (e.g. the rate of a particular tax band) to
complex formulas (e.g. a condition describing the eligibility for a
certain benefit). For detailed information see EUROMOD
Functions - Types of parameter values. For more information on
EUROMOD systems see EUROMOD Basic Concepts -
Presentation of countries' tax-benefit systems and EUROMOD
Basic Concepts - Terminology.

Group parameters
Parameters of a function may form a group in the sense that they
can describe their information only in combination, or that

parameters of the group provide additional information to the
information described by other parameters of the group. Examples
for the former are the parameters Comp_Cond and Comp_perElig of
the function BenCalc, in the sense that the condition and the amount
form the information that makes up the component. An example for
the latter is the parameter Comp_UpLim, which is additional
information with respect to the component. See EUROMOD
Functions - The policy function BenCalc for a description of the
function BenCalc and its parameters.
Parameters are grouped via the Grp/No column. This column
contains the same (integer) number for all parameters belonging to
the same group. By convention groups are in ascending order, i.e.
group 1 followed by group 2, etc. However, this is not imperative, i.e.
group 4711 followed by group 1147 would work as well. Note that the
Band_ parameters of the function SchedCalc form an exception to
this rule, as in this case the group number also determines the order
of the bands. See EUROMOD Functions - The policy function
SchedCalc for a description of the function SchedCalc and its
parameters.

Footnote parameters
Footnote parameters are parameters that provide further information
on other parameters or parts of other parameters (symbolically: they
contain footnote information to something in the "text"). For example
the footnote parameter #_LowLim may define a lower limit for a
formula or a part of a formula.
The footnote parameter and the operand it belongs to are linked by
an integer number. For the footnote parameter this number is
contained in the Grp/No column, whereas the operand is simply
followed by #number. For example, consider the formula yem#2 *
10%, and the footnote parameter #_LowLim, whose Grp/No column
is set to 2. If the parameter #_LowLim takes a value of 1000
(indicated in the System column(s)) the formula would be calculated
as 10 % of employment income (i.e. yem), if employment income is

higher than 1000 and as 10% of 1000, if employment income is up to
1000.
Note that a footnote parameter can be linked to more than one
operand, however only within the same function.
For more information on footnote parameters see EUROMOD
Functions - Footnote parameters for the further specification of
operands.

Parameters with editable parameter name
Some functions comprise parameters where the Policy column does
not contain a parameter name in the narrow sense, but information
that could be seen as a parameter value, which is equal for all
systems. For example, for the function DefConst the Policy column
contains the name of the constant, whereas the system columns
contain the value of the constant for the respective system. In
principle this is a shortcut - it would also be possible to use two
parameters (Const_Name, Const_Value) - with the advantage of
being clearer and using less space. For obvious reasons the Policy
column is editable for such parameters. For more information see
the descriptions of the functions DefConst, DefVar, Uprate,
SetDefault, DefIL.

clbr://internal.invalid/book/EM_FC_DefVar_DefConst

Adding Parameters
The Add Parameter Form
Open the Add Parameter Form to add a parameter to a function. The
form is opened by right-clicking the respective function to open its
context menu which provides the menu item Show Add Parameter
Form. Alternatively the form can be opened by selecting the function
and pressing Control-A. The dialog is non-modal, which means it can
be kept open while working on other things. Accordingly it can be
resized, shifted and minimised - except for the latter it stays on top of
all windows.
The form shows all parameters that can be added to the function (in
the column Parameter) with a description (in the column
Description). That means, amongst others, that "normal" parameters
that are already part of the function are not listed (e.g. the parameter
TAX_UNIT or the parameter formula of the function ArithOp).
Excepted from this rule are "special" parameters, i.e. parameters,
which can be added more than once (e.g. the parameter Var of the
function DefOutput or the parameter Comp_Cond of the function
BenCalc) and parameters that have "aliases" (see Replacing an
"alias" parameter below).
In consideration of its non-modality the form observes what the user
is doing and adapts its content respectively. If a function or one of its
parameters is selected, the content adjusts to this function. If a policy
is selected, the content is cleared (as the form would not know which
function of the policy it should refer to).
Two options allow for a possibly more manageable content of the
form:

Show Common Parameters: If this option is unchecked, the
form shows only parameters that are specific to the respective
function, i.e. it hides parameters that are common to all (or

most) functions, like TAX_UNIT, Output_Var,
Who_Must_Be_Elig, etc.
Show Footnote Parameters: If this option is unchecked, the
form hides footnote parameters (parameters starting with a #).
For detailed information see EUROMOD Functions - Footnote
parameters for the further specification of operands.

To assess help on the function displayed by the Add Parameter
Form use the buttons

Description: leading to a descriptive explanation of the function,
usually with a couple of examples. Alternatively press the F5
key.
Summary: leading to a full (but brief) description of the
parameters of the function. Alternatively press the F6 key.
For information on the handling of the form press the F1 key, in
fact leading to the page you are looking at.

Note that pressing the Escape key closes the form (without any
consequences) unless an editable field in the table has the focus.

Adding parameters
To add one or more parameters to the function select them by ticking
the corresponding check boxes. Then click the Add button (the
button with the green plus).
You can also use the keyboard to add parameters. Tick/untick the
corresponding check boxes: first use the arrow keys (up, down, left,
right) to move the focus to their row in the Add column, then press
the Space key. Press the Enter key to add the selected parameters.
Note that pressing the Enter key always adds the selected
parameters, unless an editable field in the table (e.g. Count) has the
focus.

Note that if in the main view a parameter is selected, new
parameters are added after this parameter, whereas if a function is
selected, new parameters are added at the end of the function.

Adding parameters that allow for more than one
incidence
Parameters that allow for more than one incidence (e.g. the
parameter Var of the function DefOutput) can be added in bulk. To
add X incidences of a parameter to the function, put X the Count
column of the parameter, which automatically selects the parameter
(i.e. its check box is ticked). Press the Add button or the Enter key to
add the parameters to the function.

Adding group parameters
For group parameters (e.g. the parameters Comp_Cond and
Comp_PerTU of function BenCalc) the form suggests the next
available group number in the Grp/No column. The group number
can be changed, though this is not recommended, as it should not
be necessary. If group parameters are added in bulk (see above) the
adding process assigns the group number indicated in the Grp/No
column to the first incidence and automatically augments the group
number for each further incidence.
See Working with EUROMOD - Presentation of (normal and) special
parameters for more information on group parameters.

Replacing an "alias" parameter
As mentioned above, parameters having an "alias" (e.g. the
parameter Output_Var with its alias Output_Add_Var) are still listed
even if they are already part of the function. More precisely they are
listed in the column Replaces while the column Parameter contains
their alias. Once the Add button (or the Enter key) is pressed the
parameter is replaced by its alias. The replaced parameter keeps its
value: if for example Output_Var was set to the variable bun_s,
Output_Add_Var will still be set to this variable.

Note that if both aliases (e.g. as well Output_Var as
Output_Add_Var) are removed from the function, they both appear in
the Add Parameter Form's list. However, trying to add them both
leads to an error message.

Adding the parameter [Placeholder]
For some functions (DefConst, DefVar, Uprate, SetDefault, DefIL)
the form contains the special parameter [Placeholder]. If this
parameter is added, its Policy column is editable (while the Policy
column is read only for any other parameter). This allows the user to
replace [Placeholder] by an appropriate value (usually the name of a
variable). The Policy column stays editable after replacing
[Placeholder], to allow for later changes of the value. Also see
Working with EUROMOD - Presentation of (normal and) special
parameters.
Note that the parameter [Placeholder] can always be added in bulk
(see Adding parameters that allow for more than one incidence
above).

clbr://internal.invalid/book/EM_FC_DefVar_DefConst

Changing parameters
In general parameter values can be changed by typing the new
value in the respective cell. However, depending on the parameter's
value type, the user interface provides different input assistance. The
following concentrates on this input assistance, for detailed
information on parameters' value types see EUROMOD Functions -
Types of parameter values.

Editing categorical parameters
For categorical parameters, i.e. parameters, which take a certain
limited choice of values, the user interface provides lists from which
the required value can be selected. Examples are taxunit parameters
(the user interface lists the available assessment units), yes/no
parameters (the user interface lists the values yes and no),
incomelist parameters (the user interface lists the available
incomelists), the parameter Who_Must_Be_Elig (the user interface
lists the values nobody, one, one_adult, all, all_adults), etc. Note that
the lists always contain the value n/a.
There are two ways of using these lists without applying the mouse.
The first is to type the initial letters of the required value, which
selects the first entry in the list that starts with these letters. For
example, if the list contains the values tu_household_sl,
tu_individual_sl and tu_family_sl, typing tu_ (or t or tu) selects
tu_household_sl, while typing tu_i selects tu_individual_sl. For the
second way, firstly select the respective cell (using the Up, Down,
Left, Right keys) and make it editable by pressing the F2 or the Enter
key, then press the Page Down key. This opens the list. Use the Up,
Down keys to select a value and confirm with the Enter or Tab key or
close the list with the Escape key.

Editing formula, condition and variable parameters
For formula parameters, i.e. parameters taking formulas like
yem*10%+ils_ben/2, condition parameters, i.e. parameters taking

conditions like IsDependentChild & dag<3 and variable/incomelist
parameters, i.e. parameters taking the names of variables and
incomelists, the user interface provides assistance in the form of so
called "IntelliSense".
This mechanism observes what the user types and makes
"suggestions" within a small window. For example, if the user is
editing a formula parameter and typing an i, the mechanism provides
a list of operands, which are allowed in a formula (i.e. variables,
incomelists, queries, etc.) and start with an i (e.g. idhh, idperson, ...,
ils_earns, il_bsaBase, ..., IsMarried, IsParent, ...). If the next
character typed is an l, the list is reduced to operands starting with il
and so on. Thus the user can either continue typing or accept a
suggestion by selecting it with the mouse. Alternative to the mouse
the Up, Down keys can be used for selecting and the Tab key for
confirming the selection. The Enter key also confirms a selection but
at the same time stops formula editing by moving the focus to the
next row. Note that if the Up, Down keys are used for selection,
IntelliSense displays a short description of the operand. Moreover,
note that small icons help distinguishing the operands by showing
different pictures for variables, incomelists, queries, etc.
Note that, if one types the character 'q', IntelliSense lists all
EUROMOD queries and thus provides an overview over all available
queries.

User interface's assistance in adding and using footnote
parameters
Some operands of formula and condition parameters allow for so
called footnote parameters. To learn more about this feature please
consult EUROMOD Functions - Footnote parameters for the further
specification of operands and Working with EUROMOD -
Presentation of (normal and) special parameters. This section
concentrates on the user interface's support for generating such
information.

Generating footnote parameters: To equip an operand in a formula
with a footnote, type # after the operands name, e.g. yem#.
Thereupon IntelliSense displays a list containing entries like
#x1[_LowLim], #x2[_LowLim], #x3[_LowLim], ..., #x1[_Level] ,
#x2[_Level] To define for example a lower limit for the operand
select #x1[_LowLim], which at first results in yem#x1[_LowLim].
However, once you complete formula editing (e.g. by pressing the
Enter key) #x1[_LowLim] is replaced by #1. Moreover, the footnote
parameter #_LowLim, with Grp/No set to 1, is added. The only task
left in finalising the definition of the operand's lower limit is setting
#_LowLim's value to the respective amount.
To be precise, the footnote number is not always set to 1, but to the
next free number, i.e. if the function already has footnote parameters
with the numbers 1, 2 and 3, the number of the new footnote
parameter is set to 4.
The purpose of #x2[_LowLim], #x3[_LowLim], etc., as offered by
IntelliSense, is to allow for generating different lower limits within one
formula editing procedure. You may for example produce the
following formula yem#x1[_LowLim] + yse#x2[_LowLim] +
poa#x3[_LowLim]. Once you complete formula editing the formula is
adapted to yem#1 + yse#2 + poa#3 (provided the function did not yet
contain any footnote parameter). Moreover, three footnote
parameters #_LowLim, with Grp/No set to 1, 2 and 3, are added.
Note that it is also possible to generate footnote parameters by using
the Add Parameter Form (see Working with EUROMOD - Adding
parameters).
Assigning existing footnote parameters: The fact that footnote
parameters can be assigned to more than one operand, as well as
the possibility to generate footnote parameters by using the Add
Parameter Form, opens the questions how existing footnote
parameters can be assigned to an operand. To do so, again type #
after the operands name, e.g. yem#. If there are existing footnote
parameters, IntelliSense displays them in the form #_LowLim1,
#_Level3, etc. Selecting e.g. #_Level3 results in yem#3 and thus the

existing footnote parameter #_Level, with Grp/No set to 3, is
assigned to the operand yem. Of course you can simply type yem#3
with the same effect, the possibility of using IntelliSense for this
purpose is more or less just a reminder, that existing footnote
parameters can be reused.
Generating #_amount parameters: #_amount parameters are in
fact just special footnote parameters, whereupon the speciality is
based in the fact that the only operand they can be assigned to is the
operand Amount. Accordingly they are generated as any other
footnote parameter with the difference that, instead of operand#, you
must type a (or am) to bring IntelliSense to list Amount#x1,
Amount#x2 and Amount#x3. The rest of the procedure is as
described above.
Assigning existing #_amount parameters: Again there is no
difference to assigning other footnote parameters, except that,
instead of operand#, you must type a (or am) to bring IntelliSense to
list Amount1, ..., Amount4711 etc.

User interface's assistance in adding query parameters
Some EUROMOD queries provide (optional or compulsory) query
parameters to specify their behaviour. These query parameters are
very similar to footnote parameters. Just like footnote parameters,
query parameters start with #_ (e.g. #_AgeMin, #_AgeMax) and they
are assigned to the respective query by #number. To learn more
about EUROMOD queries please consult EUROMOD Functions -
Queries. Again this section concentrates on the user interface's
support for generating query parameters.
IntelliSense lists queries with (optional or compulsory) query
parameters followed by #x, e.g. nPersInUnit#x. Once formula editing
is completed #x is replaced by the next free footnote number, e.g.
nPersInUnit#4, if the function already contains three footnote or
query parameters. Moreover, the respective query parameters are
added, with Grp/No set to the free footnote number. In our example

the query parameters #_AgeMin and #_AgeMax are added, with
Grp/No set to 4 (for both).
If you want to avoid the generation of query parameters, for example
because the parameters are optional and you do not want to define
them, just delete the #x after the name of the query. This informs the
user interface that generating query parameters is unwanted.

Replacing parameter names by their 'aliases'
A left-click on a parameter name (in the Policy column) may show a
dialog that asks whether the parameter should be replaced by its
'alias'. The term 'alias' refers to parameters, which replace each
other, for example Comp_perTU / Com_perElig or Output_Var /
Output_Add_Var (each also vice versa). Confirming the question
with OK replaces the parameter's name respectively.

Changing the order of parameters
There are two ways to change the order of parameters: by using (a)
drag and drop or (b) control + Up/Down keys. For each of them first
select the respective parameters. A single parameter is selected by
simply clicking it (more precisely, its name in the Policy column). A
range of parameters is selected by selecting the first parameter (i.e.
its name in the Policy column), then pressing and holding the Shift
key while selecting the last parameter. A darker blue colour shows
the selection. For a more detailed description of how to select cells
see Working with EUROMOD - Selecting components and values.
For (a) click the respective parameters with the left mouse button,
drag them with pressed mouse button to the new position and drop
them there by releasing the mouse button.
For (b) press the Control as well as the Up key to move the
respective parameters up, respectively the Control as well as the
Down key to move them down.
Note that parameters can only be shifted (up or down) within the
function they belong to. That means, this way it is not possible to
move a parameter from one function to another.

Deleting (ranges of) parameter values
Note that this subsection describes how to delete parameter values
and not how to delete parameters as a whole. For the latter please
refer to Working with EUROMOD - Deleting parameters.
A parameter's value is 'deleted' if the Delete-key is pressed while the
respective cell is selected. 'Delete' is put in quotation marks because
in fact the value is not set to empty but to n/a (not available or not
applicable). Note that this does not apply to parameter values in the
narrow sense only, but also to the switch of a policy or function.
It is also possible to delete (more precisely set to n/a) a range of
parameter values by selecting the respective range before pressing
the Delete-key. A range of parameter values is selected by selecting
the first parameter value (i.e. the respective cell), then pressing and
holding the Shift key while selecting the last parameter value. A
darker blue colour shows the selection. For a more detailed
description of how to select cells see Working with EUROMOD -
Selecting components and values. Note that, in order to delete
parameter values, the Policy column must not be part of the
selection as this instructs the interface to delete the whole
parameter.

Automatic commenting of incomelist components
The function context menu shows an additional menu item if opened
for a ILDef function: Description as Comment. If the menu point is
selected the user interface puts a description of all components of
the concerned incomelist into the Comments column. As an
example, for the Estonian incomelist il_UAB_meanstest consisting of
the components ils_origy, bmact and bcclg_s, the user interface will
describe these components as original income, parental benefit
(vanemapalk) and large family parent allowance (seitsme- ja
enamalapselise pere vanema toetus). Note that country specific
descriptions are used where available.

Deleting parameters
Parameters can be deleted by either using the context menu or via
the Delete-key. In both cases first select the parameter(s) you want
to delete. Then press the Delete-key. Alternatively right click the
name of (one of) the parameter(s) for opening the context menu and
selecting the menu item Delete Parameter(s).
A single parameter is selected by simply clicking it (more precisely,
its name in the Policy column). A range of parameters is selected by
selecting the first parameter (i.e. its name in the Policy column), then
pressing and holding the Shift key while selecting the last parameter.
A darker blue colour shows the selection. For a more detailed
description of how to select cells see Working with EUROMOD -
Selecting components and values.
Note that the selection needs to include the Policy column (i.e. the
name(s) of the parameter(s)). If only system columns and/or the
group or comment columns are selected, the interface assumes that
the respective values should be deleted - see Working with
EUROMOD - Changing parameters (paragraph Deleting (ranges of)
parameter values). Moreover, when using the context menu you
need to right click on the selection; otherwise you will be deleting the
parameter on which you right clicked, not the selection. In addition
note that with the context menu it is only possible to delete
parameters belonging to one function - use the Delete-key if you
want to delete a wider range of components.
A security question is issued before the parameters are finally
removed. Note that you can opt to not show the security query
anymore - see Working with EUROMOD - Managing warnings.

clbr://internal.invalid/book/EM_WW_ManagingWarnings.htm

Copying parameter values (and comments)
There are several options to copy the values of one or more
parameters to other parameters. They are summarised below.
Please note that these options refer to the content of the parameter
tree, i.e. they do not generate new rows. You may want to check for
options to copy whole sets of parameters in Working with
EUROMOD - Copying policies and Working with EUROMOD -
Copying functions.

Copying from and to the clipboard
This mechanism can be applied within a country and between
countries. Moreover, information can be transferred from and to
"outside", e.g. Excel.
Please note that the mechanism works without restrictions with the
system columns (displaying parameter values and policy or function
switches[1]) and the Comment column (displaying comments to
policies, functions or parameters). However there are certain
restrictions concerning the Policy and Grp/No column. While all cells
of these two columns can be copied and their values be transferred
e.g. to Excel, not all cells can be edited by pasting. The Grp/No
column is only editable for parameters, thus pasted values assigned
to policy or function rows are omitted. The edit ability of the Policy
column is even more restricted, only a few specific cells are editable,
e.g. containing the components of incomelists (function DefIL) or the
names of constants/variables (functions DefConst and DefVar). As
for the Grp/No column, only those editable cells can be changed by
pasting.

Selecting the copy region: Select the region you want to copy
by selecting the first cell of the region, and then pressing and
holding the Shift key while selecting the last cell of the range. A
darker blue colour shows the selection. For a more detailed
description of how to select cells see Working with EUROMOD -

clbr://internal.invalid/book/EM_FC_DefVar_DefConst

Selecting components and values. If no region is selected, the
copy operation refers to the focused cell.
Copying: Press Ctrl-C or Ctrl-Insert to copy the selected region.
Alternatively use the right mouse button to click within the
selection. This opens the context menu providing, amongst
others, the menu item Copy Value(s).
Selecting the paste region: Select the top-left cell of the region
where you want to paste the copied values. If you want to
restrict the paste operation to a certain region, select this region
as described above.
Pasting: Press Ctrl-V or Shift-Insert to paste the content of the
copied region to the region selected for paste. Alternatively use
the right mouse button to click within the selection. This opens
the context menu providing, amongst others, the menu item
Paste Value(s).
Please note that, if the copied region refers to one single cell,
while the paste region is a selection of several cells, all cells of
the paste region are filled by the value of the copied cell.
Also note that it may happen that the copied region is too large
or too small (because the paste region is a selection as well or
the cell selected for starting the paste operation is too far to the
bottom or right). In this case only the cells for which there is a
matching cell can be filled.

Spreading parameters over systems
A quite common task is to spread parameter values from one system
to (all) other systems. For example, if one implements a new
function, one will set the parameter values firstly in one system and
then, for a start, copy the values to all other systems to finally adapt
the values as required.
The user interface supports this task by the following mechanism:
Select the parameters you want to spread as described in Working
with EUROMOD - Selecting components and values. For spreading

a single parameter value just focus the respective cell.[2] Pressing
Alt-S spreads the selected parameter values to all other systems.
Note that parameters are only spread to visible rows and columns
(systems). This allows limiting the spreading to selected systems
(see Working with EUROMOD - The column chooser for information
on hiding systems). Moreover, be aware that functions of collapsed
policies as well as parameters of collapsed functions are not
involved in the spreading mechanism (see Working with EUROMOD
- Expanding and collapsing policies and functions). Also hidden rows
are excluded (see Working with EUROMOD - Hiding policies,
functions and parameters).
Finally, note that the mechanism checks the selection for not
exceeding the boundaries of a system. That means if parameters of
several systems are selected, pressing Alt-S is ignored.

Setting whole functions / policies to n/a
There are two options to set the switch of a policy or function to n/a:
n/a and n/a (all components). Selecting the former sets the
respective policy or function to n/a, whereas the latter sets all
functions and parameters contained in the policy, respectively all
parameters contained in the function, to n/a as well.

[1] Note that if the values pasted to policy or function switches are not switch values (i.e. on,
off, n/a) the user interface displays an empty cell, however the pasted values are actually
stored in the XML parameter file, thus the executable will issue a respective error message
(e.g. reporting that 'grumlmumpf' is not a valid switch). The same is true for any cell
displaying a drop down list when being edited (e.g. for the parameters TAX_UNIT,
who_must_be_elig, etc.).

[2] The focused cell shows a red doted border. You focus the cell by e.g. clicking into it. To
close any possibly opening editor, use the Escape key. Alternatively to the mouse you can
use the arrow keys.

Defining Uprating Factors
The user interface provides support for defining uprating factors for
monetary variables based on an index table. An example illustrates
best what this means. Let's assume we have the following index
table:

Index Reference 2012 2013 2014 Comment
Harmonised CPI (index 2012=100) $Factor_CPI 100 104.3 110.2 Source: Eurostat

Average monthly salary $Factor_WAGE 150.4 155.8 159.4 Source: Eurostat

On the basis of this table the user interface is able to generate
definitions of uprating factors for each available dataset and tax-
benefit system, which can then be used to uprate monetary variables
(e.g. in an Uprate function).
More concretely, assume the country comes with two datasets,
cc_2012_a1 and cc_2013_a1, and three systems, cc_2012, cc_2013
and cc_2014. Assuming that the years of the data correspond to
income years, the user interface will define the following uprating
factors:

For system cc_2012:

$Factor_CPI = 1 if dataset cc_2012_a1 is used
$Factor_WAGE = 1 if dataset cc_2012_a1 is used
$Factor_CPI = 0.9588 (= 100 / 104.3) if dataset cc_2013_a1 is
used
$Factor_WAGE = 0.9653 (= 150.4 / 155.8) if dataset
cc_2013_a1 is used

For system cc_2013:

$Factor_CPI = 1.043 (= 104.3 / 100) if dataset cc_2012_a1 is
used

$Factor_WAGE = 1.0359 (= 155.8 / 150.4) if dataset
cc_2012_a1 is used
$Factor_CPI = 1 if dataset cc_2013_a1 is used
$Factor_WAGE = 1 if dataset cc_2013_a1 is used

For system cc_2014:

$Factor_CPI = 1.102 (= 110.2 / 100) if dataset cc_2012_a1 is
used
$Factor_WAGE = 1.0598 (= 159.4 / 150.4) if dataset
cc_2012_a1 is used
$Factor_CPI = 1.0566 (= 110.2 / 104.3) if dataset cc_2013_a1 is
used
$Factor_WAGE = 1.0231 (= 159.4 / 155.8) if dataset
cc_2013_a1 is used

These factor definitions can then be used for example in an Uprate
function as follows:
Policy cc_2012 cc_2013 cc_2014 Comments

Uprate on on on
bch $Factor_CPI $Factor_CPI $Factor_CPI child benefits are uprated by CPI

yem $Factor_WAGE $Factor_WAGE $Factor_WAGE employment income is uprated by wage
index

which means, for example, that the variable bch is uprated with a
factor 1.102 for the system cc_2014, if dataset cc_2012_a1 is used.
If instead dataset cc_2013_a1 is used, bch is uprated with a factor
1.0566.

Generating the index table
To achieve the above described, the developer firstly must fill in the
index table. This is accomplished via a dialog opened by clicking the
button Uprating Indices in the ribbon Country Tools. The tab Raw
Indices provides the respective index table.

To add indices (i.e. rows) to the table just fill the last, empty row
respectively. This will automatically generate another empty row for a
further new index. Alternatively, right-click on the column-header and
select Add row.
To delete an index select the respective row by clicking its column-
header (the whole line will be marked by blue background). Then
press the Delete key. Alternatively, right-click on the column-header
and select Delete row.For deleting several indices use the Ctrl and
Shift keys as usual to select the rows. Then press Delete.
To add years (i.e. columns) to the table, fill the year in the field above
the button Add Year and then press the button. Use the button
Delete Year to delete the year selected in the combo-box above the
button. Year columns can be shifted by using the mouse to drag
them to the desired location.
In order to paste values into the index table (e.g. from Excel), firstly
select the respective cells. Then use Ctrl-V (or Shift-Insert) for
pasting. Similarly, to copy values from the table to the clipboard,
firstly select the respective cells, to then use Ctrl-C (or Ctrl-Insert) for
copying.
Note that, if an index is set to zero for one or more years this may,
on using it, have the following effects:
If the zero-index refers to the system year this leads to "uprating by
zero", i.e. setting the concerned variable(s) to zero.
If the zero-index refers to the data year this leads to "division by
zero", i.e. setting the concerned variable(s) to NaN (not a number).
In both cases the programme issues a respective warning.

Checking factors per dataset and system years
The tab Factors per Data and System allows for controlling which
factors will be generated, on pressing the OK button. Once a dataset
is selected in the combo-box on top of the dialog, the table will show
for this dataset the factors for each system. Note that obviously
factors can only be calculated if the (income) year of the dataset
(see Working with EUROMOD - Configuring datasets) is available

and the Raw Indices table provides as well the year of the dataset as
the year of the system. If this is not the case, the table shows n/a for
not available.
The button Update can be used to update the content of the control
table, if new information was entered to the Raw Indices table.

Using the factor definitions
Most likely the factor definitions will be used in Uprate functions as
outlined above. However, in fact the factors can in general be used
like constants (defined by DefConst functions). The only particularity
is that the constants will adopt different values dependent on the
used dataset. The interested user may read the following paragraph
to learn how this works, respectively for a closer understanding.
Important! Please note, that if a new dataset is added to an Uprate
function (by the parameter dataset) the factor definitions will not be
automatically available for this dataset. In fact it needs opening and
closing the dialog for defining Uprating Indices, as the respective
background information is only generated by this action. Reading the
following paragraph on the technical background may make this
clearer.

Checking the usage of the factors
The button Check Usage allows for assessing which variables are
uprated by any factor. Clicking the button opens a dialog which
explores all Uprate functions (switched to on) and collects the
variables for which the factors are applied. Moreover, it checks if any
factor is applied for the parameter Def_Factor.
If a factor is applied on a variable for only part of the systems (i.e.
tax-benefit-years), this is indicated by showing the respective years
in parenthesis behind the variable. It is also possible to restrict the
check to a range of (or single) tax-benefit-years by choosing the
respective start- and end-year in the From-to-boxes. In this context
please note that the check takes only standard systems into account,
i.e. systems named cc_yyyy.

Please also note that the check is limited to Uprate functions. It does
not check if the factor is used anywhere else in the implementation
of the country. To provide for such an extended search, press the
button Go to Component Use, which opens the Component Use
dialog.

Technical background
The information displayed by the Raw Indices table, as well as the
factor definitions generated by the user interface on the base of this
table, are stored in a hidden policy.[1] This policy comprises one
DefVar function - this function contains the information stored in the
Raw Indices table[2]. Moreover, it contains one DefConst function for
each of the country's datasets.
The DefConst functions contain a definition for each factor of the
Raw Indices table, in the form:
Policy Grp/No cc_2012 cc_2013 cc_2014
DefConst on on on
$Factor_CPI 1 1 1.043 1.102

const_dataset 1 cc_2012_a1 cc_2012_a1 cc_2012_a1

$Factor_WAGE 2 1 1.0359 1.0598

const_dataset 2 cc_2012_a1 cc_2012_a1 cc_2012_a1

DefConst on on on
$Factor_CPI 1 0.9588 1 1.0566

const_dataset 1 cc_2013_a1 cc_2013_a1 cc_2013_a1

$Factor_WAGE 2 0.9653 1 1.0231

const_dataset 2 cc_2013_a1 cc_2013_a1 cc_2013_a1

As can be read in the description of the function DefConst, the
parameter const_dataset effects, that: "... constant is only defined if
the respective dataset is used for the run". In the example that
means that for the system cc_2012 the constant $Factor_CPI takes
on the value 1, if run with the dataset cc_2012_a1 and 0.9588, if run
with the dataset cc_2013_a1.
Note that the "IntelliSense" (see Working with EUROMOD -
Changing parameters, paragraph Editing formula, condition and
variable parameters) will for the system cc_2012 show two entries
for the constant $Factor_CPI (i.e. $Factor_CPI (1) and $Factor_CPI

clbr://internal.invalid/book/EM_FC_DefVar_DefConst

(0.9588)). As "IntelliSense" is only typing assistance it does not
matter which of it is selected.

[1] The name of the policy is DefUpratingFactors_cc and it is the very first policy in the
spine.

[2] The first parameter of this function stores the Raw Indices table's years (in the form
"2012°2013°2014"). Each further parameter contains the information for one index, i.e. raw
of the Raw Indices table (in the form "Harmonised CPI (index 2012=100) °
$Factor_CPI°100°104.3°110.2°Source: Eurostat") The information is stored in the
parameters' name while the parameters' values are all set to n/a (to avoid unnecessary
redundancies). The function is switched off and thus just used for informing the dialog.

Defining Indirect Tax Rates and Excises
Prices
The user interface provides support for defining indirect tax rates and
excises prices based on a respective table.

Index 2015 2020 Comment
$VAT_zero 0% 0% VAT zero rate

$VAT_std 24% 20% Standard VAT rate

$PRICE_WINE n/a 6.37 Average price of wine, per lt

Generating the table
The table is filled in via a dialog opened by clicking the button
Indirect Taxes in the ribbon Country Tools.
To add a tax-rate/excise-price to the table just fill the last, empty row
respectively. This will automatically generate another empty row for a
further tax-rate/excise-price.
To delete a tax-rate/excise-price select the respective row by clicking
its column-header (the whole line will be marked by blue
background). Then press the Delete key. For deleting several rows
use the Ctrl and Shift keys as usual to select the rows. Then press
Delete.
To add years (i.e. columns) to the table, fill the year in the field above
the button Add Year to then press the button. Use the button Delete
Year to delete the year selected in the combo-box above the button.
Year columns can be shifted by using the mouse to drag them to the
desired location.
In order to paste values into the table (e.g. from Excel), firstly select
the respective cells. Then use Ctrl-V (or Shift-Insert) for pasting.
Similarly, to copy values from the table to the clipboard, firstly select
the respective cells, to then use Ctrl-C (or Ctrl-Insert) for copying.
Pressing the button Save & Close will, after a (successful) check for
validity, store the definitions in the table.

Using the definitions
As the table provides different values based on a year, it needs to be
decided which of these values is used for a concrete run. This
decision is taken based on the used dataset: The dialog for
configuring datasets provides a field Ind.Tax Table Year for this
purpose. By filling in a year, each run using this dataset will use the
values in the table as defined for this year.
Most likely the definitions will be used in IlArithOp functions.
However, in fact the factors can in general be used like constants
(defined by DefConst functions). The only particularity is, that the
constants will adopt different values dependent on the used dataset.

Undo and redo
To undo the last change click the blue arrow pointing to the left in the
top left corner of the user interface or press Ctrl-Z. This procedure
can be repeated until there is no undone change left to be redone.
To redo the last undone change click the blue arrow pointing to the
right in the top left corner of the user interface or press Ctrl-Y. This
procedure can be repeated until there is no change left to be redone.
Note that "change" may encompass several operations. If for
example several parameters are added by clicking Add in the Add
Parameter Form (see Working with EUROMOD - Adding
parameters), undo will not remove each parameter separately, but all
parameters added with the same Add action at once.

Expanding and collapsing policies and
functions
In order to view all the functions in a policy (or all the parameters in a
function respectively) you can expand the policy/function in the
following ways:

by clicking the little right arrow button on the left side of its
name.
by focusing on that policy/function and pressing the Ctrl + Right
Arrow key combination on your keyboard.
by focusing on that policy/function and pressing the plus key on
your keyboard (this will also work for multiple selected
policies/functions).
by focusing on that policy/function and pressing the multiply key
on your keyboard (this will fully expand the focused/selected
items and all its children).
by right-clicking on the policy/function/parameter name and
selecting the menu item Expand All Functions (this will fully
expand the focused/selected policies and all its children).

Similarly, you can return to the compact view by collapsing an
expanded policy/function in the following ways:

by clicking the little down arrow button on the left side of its
name.
by focusing on that policy/function and pressing the Ctrl + Left
Arrow key combination on your keyboard (if the focused item is
already collapsed, this will move the focus to the item's parent).
by focusing on that policy/function and pressing the minus key
on your keyboard (this will also work for multiple selected
policies/functions).

by focusing on that policy/function and pressing the divide key
on your keyboard (this will fully collapse the focused/selected
items and all its children).
by right-clicking on the policy/function/parameter name and
selecting the menu item Collapse All Functions (this will fully
collapse the focused/selected policies and all its children).

Finally, to view all functions and parameters of all policies (i.e. the
whole available information) right click the header of the Policy
column and select the menu item Expand All Policies. To return to
the compact view, i.e. hide all functions and parameters, right click
the header of the Policy column and select the menu item Collapse
All Policies.

Hiding & showing parts of the Spine
Hiding policies, functions and parameters
The row context menu, opened by right clicking on the row number,
allows for hiding and unhiding (ranges of) policies, functions and
parameters.

Hiding a single policy, function or parameter
Right click on the number of the respective row and select the menu
item Hide Row from the row context menu. For example, click row
number 3 for hiding the 3rd policy in the spine; row number 4.2.6 for
hiding the 6th parameter of the second function of the fourth policy in
the spine, etc. Alternatively select the row of the policy, function or
parameter and press Alt-Shift-H.

Hiding multiple selected policies, functions or
parameters
First select a range of cells, then right click on any row number and
select the menu item Hide Selected Rows from the row context
menu. This will hide all the policy, function and parameter lines that
are currently selected. Note that if there is no current selection, then
this menu item will appear disabled.

Hiding all but a single policy, function or parameter
Right click on the number of the respective row and select the menu
item Hide all other Rows from the row context menu. For example,
click row number 3 for hiding all policies except the 3rd policy in the
spine; row number 4.2.6 for hiding all parameters of the second
function of the fourth policy in the spine except the 6th, etc.
Alternatively select the row of the policy, function or parameter and
press Alt-O.

Hiding a range of policies, functions or parameters

Right click on the first row of the range to open the row context menu
and move the mouse over the menu item Hide Rows unto. This
opens a sub menu containing a combo box with a list of row
numbers. Select the last row of the range to hide all rows within the
range.
Note that the listed row numbers are limited to rows, which firstly
follow the first row of the range and secondly are on the same level
as the first row. For example, if row number 3 is selected as the first
row, i.e. the 3rd policy in the spine, the list of row numbers comprises
4, 5, 6, 7, etc., i.e. all policies after the 3rd. Selecting 6 hides policies
3, 4, 5 and 6 and obviously also the included functions and
parameters. If row number 4.2.6 is selected as the first row, i.e. the
6th parameter of the second function of the fourth policy in the spine,
the list of row numbers comprises 4.2.7, 4.2.8, 4.2.9, etc., i.e. all
parameters after the 6th parameter of the second function of the
fourth policy. Selecting 4.2.8 hides parameters 4.2.6, 4.2.7 and 4.2.8.

Hiding policies or functions that are "n/a" in all currently
visible systems
Right click on any row number and select the menu item Hide all
"n/a" Policy/Function rows. This will go through the whole spine and
hide all policies and functions which are set to "n/a" in all of the
currently visible systems. Note that this only works for policies and
functions; it will not affect parameters even if they are set to "n/a" for
all visible systems.

Hiding selected policies or functions that are "n/a" in all
currently visible systems
First select a range of cells, then right click on any row number and
select the menu item Hide selected "n/a" Policy/Function rows. This
will go through the selected policies and functions and hide those
which are set to "n/a" in all of the currently visible systems. For
example you may want to quickly hide "n/a" functions within a given
policy. In this case you would click on that policy and then right click
on its row number and select the Hide selected "n/a" Policy/Function

rows item. Note that this only works for policies and functions; it will
not affect parameters even if they are set to "n/a" for all visible
systems.

Unhiding policies, functions or parameters
Right clicking any row and selecting the menu item Unhide Rows
from the row context menu opens a dialog that lists any hidden
ranges of rows. Check the box of the range you want to unhide and
press the button Unhide. You can also use the "Check All" checkbox
at the bottom to quickly check/uncheck all the available ranges. Note
that nested hiding is not taken into account. For example, if you first
hide functions 3.2 to 3.6 and afterwards policies 2 to 4, the dialog
only lists policies 2 to 4 and unhides all functions and parameters
included.

Private comments
In addition to the comment, which is presented in the rightmost
column, it is possible to record "private comments". Such comments
are private in the sense that they are not available in public versions
(see Working with EUROMOD – Generating a EUROMOD public
version).

Recording, changing and deleting private comments
To record or change a private comment right-click the Comment
column of the respective policy, function or parameter to open the
context menu and select the menu item Private Comment.[1] This
opens an input box for editing the comment. The private comment is
deleted by clearing it in the input box.

Display of private comments
The existence of a private comment is indicated by a small red
rectangle in the comments cell. The respective text can be viewed
(like a tool tip) by moving the mouse over the cell.

[1] In fact the context menu can also be opened by clicking any other column except the
Policy column. (The policy context menu does not provide the menu item to avoid further
overload.)

Changing text size
The bottom right corner of the user interface contains the field
Textsize: + -. Click + to increase and - to decrease the font size.

Saving changes
To save your changes open the main menu (above the button Run
EUROMOD) and select the menu item Save Country. Alternatively
press Ctrl-S. For further information on file organisation and structure
see EUROMOD Installation and File Structure.

Saving a copy of a country
To generate a copy of a country select the menu item Save Country
As from the main menu (above the Run EUROMOD button). This
opens a dialog allowing indicating the Long Name and the Short
Name of the copied country. The former is the countries full name
(e.g. Hungary, Spain, MySpain, etc.), the latter is the country code
(e.g. HU, ES, MS, etc.). Note that the country code needs to be
unique, i.e. no other country with this code exists yet.
Moreover, you are asked to indicate a Flag in portable network
graphic format (png). Ideally the size of the image is 28x17 pixels.
You can also select the image with the file search dialog opened by
pressing the button alongside the Flag field. If you do not indicate a
flag image, the flag of the origin country will be used.
If the checkbox Advanced Adaptations is not ticked Save As simply
copies the country's parameter files without any further adaptation.
Ticking the box effects also adapting the content of the files (e.g.
changing system- and policy-names to reflect the short name of the
copied country) and possibly global settings (HICP, exchange rates).
The user can define what is changed concretely by opening a
configuration dialog (i.e. clicking the button …). The comments in the
dialog also explain the changes.
Once the specifications are confirmed with OK the copy of the
country is displayed in the country gallery (ribbon Countries) and can
be loaded and edited as any other country. Note that, after Save As,
the loaded country is the copied. The origin country is not loaded
anymore and has the status of the last saving before the Save As.

For information on the files, which are generated by the copy
process see EUROMOD Installation and Architecture.

Auto-saving
The user interface provides an auto-saving feature, which
automatically saves changes to a country's parameter files in
configurable intervals of time. The changes are not saved in the
original country's parameter files but in temporary files called
astmp_cc.xml and astmp_cc_DataConfig.xml and stored in the
temporary folder (see EUROMOD Installation and File Structure). If
the user interface fails to load a country it suggests using these files
if existent.
To configure the auto-saving interval, or to en- or disable auto-
saving, select the menu item Project Configuration from the main
menu (above the Run EUROMOD button). The tab Auto Save of the
appearing dialog allows for defining these settings.

File locking
In order to avoid that several developers change a country at the
same time, the user interface uses a locking mechanism.[1] That
means once a developer opens a country "normally", i.e. in read-
write modes, any further developer who opens the same country,
gets an is-in-use-message, which tells who is using the country and
asks whether the country should be opened in read-only modus. The
user interface allows for three reactions to this message: Firstly, with
pressing 'Yes' the country is opened in read-only modus, meaning
that saving is disabled. Secondly, with pressing 'Cancel' the
developer decides to not open the country. Thirdly, with pressing
'No', the country is opened "normally", i.e. in read-write modes. This
last option is foreseen for cases, where due to an unforeseen event
the locking of the country was not removed after closing it, i.e.
locking is irrelevant. Developers should however be aware that the
option allows for actually overwriting other developers changes or
getting once own changes overwritten - it must therefore be used
with care.

Please note that file locking is not only applied on countries but also
on add-ons and on the variables file.

[1] Technically the user interface generates a small text file alongside the parameter files,
which contains information on who uses the country. The file is deleted once the country is
closed again.

Changing Countries' Settings

Changing country settings
To view or change a country's settings select the ribbon Country
Tools and click the button Country in the Configuration group.
The dialog allows for changing the Long Name of the country (e.g.
Austria, Greece, ...).
Moreover it is possible to set the country "private". For further
information concerning private components see Working with
EUROMOD - Generating a EUROMOD public version.
Note that the Short Name of the country cannot be changed by the
user. It needs to correspond to the filenames of the XML-files storing
the country (see EUROMOD Installation and Architecture -
EUROMOD content (parameter files) - Format of country parameter
files).

Changing system settings
To view or change the settings of a country's systems select the
ribbon Country Tools and click the button Systems in the
Configuration group. This opens a dialog, which lists all systems with
their settings and allows for changing the settings. For more
information on EUROMOD systems see EUROMOD Basic Concepts
- Presentation of countries' tax-benefit systems and EUROMOD
Basic Concepts - Terminology.
The settings include:
Exchange Rate: This setting indicates the rate used by the model to
convert national currency into Euro or vice versa (i.e. Euro amounts
are multiplied by the rate to get amounts in national currency). For
any country whose national currency is the Euro the parameter
should be set to 1.
Currency Parameters: This setting indicates the currency used for
monetary parameter values. Possible values are euro or national
(standing for national currencies like Danish Krone, Polish Zloty,
Bulgarian Lev,etc.). For more information on EUROMOD parameters
see EUROMOD Basic Concepts - Presentation of countries' tax-
benefit systems.
Currency Output: This setting indicates the currency used for
generating EUROMOD output. Possible values are again euro or
national. For more information on EUROMOD output see
EUROMOD Basic Concepts - EUROMOD input and output).
Private: This setting, if checked, indicates that the system is not
(yet) ready to be presented to the public. In practise the only impact
of the setting concerns the generation of a EUROMOD public
version, see Working with EUROMOD - Generating a EUROMOD
public version.
Income for Unit Head Definition: This setting indicates which
income concept is used as a default for determining which member
of an assessment unit is the "head". A combo box provides all

incomelists available for the system, to allow for selecting an
appropriate income concept. The default setting is ils_OrigY. For
further information consult the description of the function DefTU in
EUROMOD Functions - The system functions DefTU and UpdateTU.
Click OK to confirm any changes or Cancel to close the dialog
without any consequences. Note that changes are only definite once
the country is saved. Before that you can still use the undo
functionality (see Working with EUROMOD - Undo and redo) or
close the country without saving.

Configuring datasets
To view or change the settings of the datasets that can be used to
simulate the country's tax-benefit systems select the ribbon Country
Tools and click the button Databases in the Configuration group.
This opens the Configure Databases dialog.

Assigning datasets to systems
The upper part of the dialog shows a table where the row headers
list all datasets available for the country, while the column headers
list all available systems. The intersection of a dataset (row) and
system (column) indicates whether the system can be run with the
dataset, in other words whether they form a so-called system-
dataset combination (see EUROMOD Basic Concepts - Terminology
and Working with EUROMOD - Running EUROMOD for more
information).
There are three possible settings. A cross (x) indicates that the
dataset and the system form a system-dataset combination. best
also denotes a system-dataset combination, however in addition this
combination is a Best Match (see EUROMOD Basic Concepts -
Terminology). n/a means that the system cannot be run with the
dataset.
Note that, if a system is copied (see Working with EUROMOD -
Adding systems), the datasets assigned to the original system are
automatically also assigned to the copied system. Use the Configure
Databases dialog to change this, if necessary.
A right click in the datasets table opens a context menu, which
allows for more convenient assigning of datasets to systems, by
allowing to set the same value (x, or n/a) for all system-dataset
combinations of a specific system or a specific dataset.

Adding removing or renaming a dataset
To add a dataset click the Add Dataset button, which opens a file
search dialog allowing for the search of a text file containing data

suitable to run (one or more of) the country's systems.
To delete a dataset, select it and click the Delete Dataset button.
Note that the dataset is removed without any further warning, but
you can still undo this action by closing the dialog with the Cancel
button. Of course the dataset (text file) is not deleted physically, the
removal concerns only the ability to use the dataset with the
country's systems.
To rename a dataset, select it and click the Rename Dataset button.
This opens a textbox, which allows for entering the new name.

The settings of the selected dataset
Below the Datasets / Systems table the dialog shows the settings of
the selected dataset.
Collection Year: This setting indicates the year the data were
collected.
Income Year: This setting indicates the year the monetary values
within the data refer to.
Currency: This setting indicates in which currency data are stored.
Possible values are euro or national (standing for national currencies
like Danish Krone, Polish Zloty, Bulgarian Lev, etc.).
Decimal Sign: This setting indicates whether data uses point (.) as
decimal sign or comma (,).
Path: This setting indicates a specific path to locate the dataset.
Usually it is left empty, to instruct EUROMOD to locate the dataset at
the default path (see Working with EUROMOD - Open project).
Private: This setting, if checked, indicates that the dataset is not
(yet) ready to be presented to the public. In practise the only impact
of the setting concerns the generation of a EUROMOD public
version, see Working with EUROMOD - Generating a EUROMOD
public version.
Use Common Default: Checking this option means that any
variable not existent in data, but used by the system, is set to zero,

i.e. no error message is issued. In this context also consider the role
of the function SetDefault.
Read Expenditure-related Variables: Checking this option will
cause all expenditure-related variables to be automatically imported
frorm the data. These variables can then be used within the model
exactly as if they were defined one by one in the variables file.The
definitions of expenditure-related variables are as follows:

Expenditure variables: all variables whose name starts with "x"
followed by numbers only; imported as monetary variables
Quantity variables: all variables whose name starts with "q"
followed by numbers only; imported as non-monetary variables
Price variables: all variables whose name starts with "p"
followed by numbers only; imported as monetary variables

String Output Variables: This setting indicates a list of variables,
separated by space, which exists in the described data and are to be
transferred to output.
The values of the variables may be alpha-numeric (i.e. contain
strings).
Note that a warning is issued if the variables are not found.
Moreover, note that the name is not case-sensitive.
Ind.Tax Table Year: See Defining Indirect Tax Rates and Excises
Prices for the usage of this value.
Read Expenditure-related Variables: Checking this option means
that the programme reads all expenditure-related variables, where
expenditure-related means that the name of the variable must start
with x (for expenditure), p (for price), q (for quantity) or xs (for share
of income). All other characters must be digits (0 to 9).
These variables are then disposable, independent on whether they
are declared in the variables file or not. That means amongst others

that they are covered by using e.g. VarGroup=x* in the DefOutput
function (independent on whether they are used elsewhere).

Click OK to confirm any changes or Cancel to close the dialog
without any consequences. Note that changes are only definite once
the country is saved. Before that you can still use the undo
functionality (see Working with EUROMOD - Undo and redo) or
close the country without saving.

Finding an error
An error message of the EUROMOD executable has the following
format:

Error: Variable or incomelist 'borer' not defined.
System: at_2011
Policy: tin_at; row 7
Function: arithop; row 7.3
Parameter: formula; row 7.3.2
Value: borer
Identifier: b10e103f-0652-4a77-b2ec-d021636b98f4

The error can be found in the user interface by either looking for the
indicated row numbers or by searching the parameter or function by
its identifier. The Search by Identifier dialog serves the latter
approach. To open the dialog, select the ribbon Country Tools and
press the button Search by ID in the Search group. Copy the
Identifier (b10e103f-0652-4a77-b2ec-d021636b98f4 in the example)
from the error message to the field Identifier and press Find to jump
to the component.
Note that the dialog does not support finding an error produced by
running a system with an add-on (see Working with EUROMOD -
Running EUROMOD paragraph Running add-on systems). In the
case of add-on-systems the row numbers indicated by the error
message refer to the order in which components are actually
processed. This order is generated at run-time and therefore not
visible "from outside". Similar is true for the identifier, as it is
internally generated by the user interface and not visible from
outside either.

Some comments on EUROMOD's error reporting
EUROMOD distinguishes two phases of error handling and two
(actually three) types of errors. Phase one of error handling
comprises reading and checking parameters and reading data - let's
refer to it as read-time - while phase two concerns computing the

necessary calculations and outputting results - let's refer to it as run-
time. The two types of errors are critical and non-critical errors
(the latter also referred to as warnings).
During read-time the model gathers all errors, independent of type,
without stopping. Once the phase is finalised it always stops if there
are critical errors, to issue respective error messages. If there are
only non-critical errors it only stops if the box Do not stop on non-
critical errors in the Advanced Options of the Run EUROMOD dialog
is unticked (see Working with EUROMOD - Running EUROMOD
paragraph Advanced settings), otherwise it continues. During run-
time EUROMOD always stops immediately once a critical error
occurs. Whether it stops on non-critical errors again depends on
ticking Do not stop on non-critical errors: if not ticked it stops
immediately, if ticked it continues and issues the gathered error
messages after finishing the phase or once a critical error occurs.
Finally, a third type of error exists - this concerns "very critical"
errors, which necessitate an immediate stop, independent of the
phase.
Concluding, it may be informative to learn, which errors are classified
as critical or non-critical by the model. Intuitively speaking one could
say that EUROMOD is very strict during read-time and classifies
most errors as critical. In contrast the model is rather lenient during
run-time and considers errors as non-critical, as long as it finds a
way to continue its calculations (warnings inform about the
respective handling in their error message). The motivation for this is
found in the fact that phase two takes much longer than phase one,
i.e. the model tries to immediately inform the users after the short
read-time that something went wrong, while they may confidently go
for a coffee during run-time and will get a summary of errors once
they are back. In reality running one system of a country (with a not
too big dataset) usually takes a few minutes, which is unfortunately
too short for the coffee. However, one could imagine a reform that
comprises a lot of countries, systems or loops. In that case the user
may first get the parameters right and have time for her coffee, while
running this big reform.

Searching and replacing
Selecting the ribbon Country Tools and pressing the button Search +
Replace opens the Search and Replace dialog. The dialog can also
be accessed by pressing Ctrl-F to open it in the search mode and by
Ctrl-H to open it in the search and replace mode.

Searching
To search for example for the string abc, type abc into the field
Search and press either the button Search Next or the button Search
Previous. This finds the cell nearest to the currently focused cell,
which contains the string abc. Search Next finds the nearest cell
after and Search Previous finds the nearest cell before the focused
cell. "Finding" means that the respective cell is focused (red-dotted
border) and made visible by expanding the parent nodes, if
necessary, and scrolling to the position of the cell.
It is possible to use search patterns. That means ? can be used for
symbolising one arbitrary character and * for symbolising any
number of arbitrary characters. bch??_s, for example, finds bch00_s,
bch01_s, bchba_s, ..., bchyc_s, while bch*_s finds the listed strings
as well as bch_s, bchba01_s, ..., bchucrg_s.
Note that any searched string or pattern is stored by the dialog, in
the sense that one can pick it from the list, which is displayed by
clicking the arrow button right of the Search field.

Specifying the search
The Search and Replace dialog offers several options to specify the
search:

Search in ... Cells

As a default the search refers to all cells. Note however, that
cells which are hidden due to row-hiding (see Working with
EUROMOD - Hiding policies, functions and parameters) or

because the system was moved to the Hidden Systems Box
(see Working with EUROMOD - The Hidden Systems Box)
Selecting the option Visible Cells restricts the search to cells
which are visible in the sense that they are not hidden because
their parent node is collapsed. Note that cells hidden due to
scrolling are still found (in fact the interface scrolls to the
position of the found cell).
Selecting the option Selected Cells restricts the search to
selected cells (see Working with EUROMOD - Selecting
components and values).

Search in ... Columns

As a default the search refers to all columns, except those
moved to the Hidden Systems Box (compare above).
When the option System Columns is selected, the search only
takes system columns into account.
When the option Policy Columns is selected, the search only
takes Policy columns into account.
When the option Comment Columns is selected, the search only
takes the Comment column into accoun.

Search by ...
As a default (option Search by Columns) the search first finds all
occurrences of the searched string or pattern in the first (affected)
column, to then find all occurrences in the second column, etc.
Selecting the option Search by Rows effects that the search first
finds all occurrences in the first (affected) row, to then find all
occurrences in the second row, etc.

Match Case
As a default the search is not case sensitive. Ticking the box Match
Case enforces case sensitivity.

Match Entire Cell Content
As a default the searched string or pattern does not need to be the
only content of the found cells. For example yem finds a cell
containing yem as well as a cell containing yem*10%. By ticking the
box Match Entire Cell Content, the cells containing exclusively the
searched string or pattern are found (i.e. the first match in the
example).

Include Private Comments
As a default the search does not include private comments (see
Working with EUROMOD - Private comments). Ticking the box
extends the search to jump to the respective cell in the Comment
column, if the private comment matches the search criteria. Note that
the box is not available in replace mode.

Replacing
Pressing the button Replace ... displays the field Replace by and the
button Replace All. The field Replace by allows to indicate a string
by which the string in the field Search has been replaced. To start
(single) replacing, press Search Next to find the first match.[1] Then
press Replace to replace the content in the found cell. This moves
the focus automatically to the next matching cell (where Replace can
be pressed again).
Pressing the button Replace All replaces all occurrences of the string
in Search by the string in Replace by, taking into account the
following restrictions (which also apply to single replacement).

Replacing does not allow for search patterns, i.e. ? and * cannot
be used.
Matches in the Policy and Grp/No columns can only be replaced
if the respective cell is editable, otherwise an error message is
displayed. Please refer to Working with EUROMOD - Copying
parameter values (and comments) paragraph Copying from and
to the clipboard for restrictions on replacing values in the Policy
and Grp/No column.

The search options as described above, in paragraph Specifying
the search are valid for replacing as well.

The Search and Replace dialog does not provide a Search All
option, however a similar functionality is provided by the Component
Use dialog with the option Component named (see Working with
EUROMOD - Checking component use).

[1] Note that you need to start the replacing by focusing a cell that matches Search -
otherwise an error message is issued.

Checking component use
Selecting the ribbon Country Tools and pressing the button
Component Use opens the Component Use dialog. This dialog
allows for checking which "components" are used for the
implementation of the country in EUROMOD. The following
components can be included into the check:

Included components
Variables: If this option is selected all EUROMOD variables, as
listed in the variables file, are included into the check. As the
checking for the use of all variables may cause that the check takes
quite a lot of time, the variables can be restricted to those having
country specific description. For closer information see Working with
EUROMOD - Administration of EUROMOD variables. Moreover, the
check-boxes monetary, non-monetary, simulated and non-simulated
allow for further restriction to the variables which feature the
respective characteristics.
Assessment Units: Selecting this option includes assessment units
in the check (see EUROMOD Basic Concepts - EUROMOD
terminology).
Incomelists: Selecting this option includes incomelists in the check
(see EUROMOD Basic Concepts - EUROMOD terminology).
Queries: Selecting this option includes EUROMOD queries in the
check (see EUROMOD Functions - Queries).
Component named: This option allows for checking the use of a
specific component, i.e. a specific variable, assessment unit,
incomelist or query. Moreover, it allows for checking the use of
variables and constants generated with the functions DefVar and
DefConst (which are not taken into account by the option All
Variables).
Ignore if Switched Off: Selecting this option means that
components used only in switched off policies and functions are not

recognised as used.
Include Systems: The list allows to restrict the check for usage to
the selected systems.

Listing of used components
Pressing the Start button starts the check. A progress bar is
displayed to inform about the time still necessary for the check. Once
the check is finished, components as selected are listed if they are
used in the implementation of the country. If a component is used
several times, it is listed as often as it is used, each time with the
respective location of use.

Jumping to a component
Selecting a specific use of a component and pressing the button
Goto jumps to the selected use in the country's implementation. If
the dialog is reopened (by pressing the button Component Use) it
still shows the content of the last check, i.e. jumping to a component
does not "destroy" the results of the check. The results of the last
check are in general only cleared by a new check, but not for
example by closing the dialog.

Storing results
Pressing the Store button allows for specifying a file where the
current listing of component usage is stored in tabulated text format.

Extensions
The EUROMOD user interface provides a special way to switch
elements - namely policies, functions or parameters - on or off via
the run dialog, i.e. without having to make changes in the parameter
files. To learn how this works from the user's point of view please
see Working with EUROMOD - Running EUROMOD, paragraph
Switching extensions on or off. The present section concentrates on
describing how to administrate the underlying information.
Implementing an extension involves the following steps:

a. creating the extension
b. implementing the elements (policies/functions/parameters)

belonging to the extension
c. assigning these elements to the extension, and possibly define

elements which are excluded by the extension
d. setting default-switches for the extension for the available

system-dataset combinations

a. Creating the extension
Extensions can be country specific or global, where the latter means,
that they are in principle available for any country, provided they are
implemented (points b-d). There are two buttons for creating each
kind: the button Admin Country in the ribbon Country Tools for
country specific extensions and the button Admin Global in the
ribbon Administration Tools for global extensions. Both open a
dialog, which provides options for adding, deleting and changing
extensions. Once the respective changes are accomplished and the
dialog is closed with OK, the information is stored in the country
parameter files for country specific extensions, and in the global
extensions file for global extensions[1].
The information required for an extension has three components:

a short name (e.g. TCA)
a long, more descriptive name (e.g. Tax Compliance
Adjustments)
and a 'look': for this the dialog allows for selecting a colour,
which is used for drawing the markers that represent the
extension in the spine

b. Implementing the elements belonging to the extension
This simply means that the policies, functions and parameters, which
make up the extension, have to be implemented. Thus it is usual
developing work and requires no further description at this place.

c. Assigning elements to the extension
Apart from switching the extension itself on or off (in the run-tool or
via default switches), the elements of the extension, i.e. policies,
functions and parameters, can be on or off. This may be best
illustrated by an example:
Consider an extension XYZ that replaces the base-line policy
BSA_cc by an extension-policy BSA_XYZ_cc.
If XYZ is switched on (in the run-tool or by default), BSA_XYZ_cc
should be on and the base-line policy BSA_cc should be off.
If XYZ is switched off, BSA_XYZ_cc should be off and the base-line
policy BSA_cc should be on (i.e. a normal base-line-run).
Assigning elements to the extension is accomplished either via the
menu-item Extensions in the context-menu of policies, functions and
parameters, or via the analogue buttons in the ribbon Country Tools.
The sub-menus respectively buttons Add to, switch on and Add to,
switch off allow for adding elements (as on or off) and the sub-
menu/button Remove from allows for removing elements. These
sub-menus/buttons open a sub-menu showing the extensions
available for the respective action, i.e. only those that allow for the
action.

Note that the add/remove concerns all selected elements (and not
only the element the context-menu belongs to).
Once an element is added to an extension, the element and all its
child-elements (functions and parameters) show an extension-
marker in the row-number column in the colour of the extension: this
is

a tick (ü) for elements added as on and
a cross (x) for elements added as off.

In addition, if policies and functions are added as on to an extension,
they (and in the case of policies, also their child-functions) show
switch as their switch, instead of on/off/na, to symbolise that the
elements are now switchable (for example) by the run-tool.
It may also be relevant to know that, if policies and functions are
added as off to an extension, they are not touched if the extension is
off. That means if this (base-line) element is actually anyway off or
n/a it is of course not switched on, if the extension is off. In other
words, if the extension is off, base-line-behaviour is fully effective.

As outlined above, in principle, adding a policy to an extension also
adds all its functions and parameters to the extension, with the same
setting, i.e. on or off. The same is true for a function and its
parameters. However, it is possible to overwrite the on-setting of the
parent-element (e.g. policy) to off for a sub-element (e.g. function).
This feature makes in fact only sense, if a policy or function is part of
more than one extension. The following example may illustrate the
usage:
Policy SL_2020 Comment

üüPolicy_Shared_By_BTA_and_TCA_sl switch This policy belongs to two extensions: BTA and TCA.

üüDefConst switch This function should run if BTA is switched on as well
as if TCA is switched on.

üxArithOp switch This function should run if BTA is switched on.
xüArithOp switch This function should run if TCA is switched on.

An important information for being able to interpret the example is
that on always wins!
Thus, if both extensions, BTA and TCA, are off, the policy
Policy_Shared_By_BTA_and_TCA_sl is off.
If both extensions are on, the policy is on, as well as all its functions.
If BTA is on and TCA is off, the DefConst and the first ArithOp are
on, the seconc ArithOp is off.
If BTA is off and TCA is on, the DefConst and the second ArithOp
are on, the first ArithOp is off.
As described above functions which are part of a policy, which is
added as on to an extension, in principle show switch as their
switch.
If however, the policy (before being added) has functions, which are
set to on or n/a, their switch will not be changed to switch, but still
show off or n/a. Such functions are permanently switched off in the
sense that, independently of whether the extension is on or off, the
function will never be on. Thus this feature serves for information
only, as obviously the functions have no effect on the run. It may e.g.
be applied for preserving old versions or prearranging new versions
of functions.
Please note that, once a policy is added as on to an extension, all
new functions will automatically show switch as their switch, i.e. be
switchable by (e.g.) the run-tool. [2]

d. Setting default-switches for the extension
To make an extension available in the run-tool it is necessary to
define default-switches on system-dataset-combination-level. That
means there can be a different default-switch for each system-
dataset-combination.
Default-switches are set via a dialog activated by the button Set
Switches in the Extensions-section of the ribbon Country Tools.
The left part of the dialog provides a list of all existing extensions
(global and country specific). Checking an extension of this list fills
the table in the right part of the dialog with the respective switches
for each system-dataset combination. An empty (and not

changeable) cell indicates that the respective system-dataset
combination is not available (i.e. the dataset cannot be used to run
the system). For the (other) switches three values are possible:

on means that the extension is switched on as a default for this
system-dataset-combination.
off means that the extension is switched off as a default for this
system-dataset-combination.
n/a means that the extension is not switchable for this system-
dataset-combination. More precisely that means:
All policies and functions added as on to the extension are off and
all parameters set to n/a.
Elements added as off just have their usual value.
If for a switch no explicit default value is specified, n/a is used as
a default.

These default values are used by the run-dialog to compose the
buttons in the extension-switch-columns (see Working with
EUROMOD - Running EUROMOD), paragraph Switching extensions
on or off.
A right click in the switches table opens a context menu, which
allows for more convenient definition of the switch values, by
allowing to set the same value (on, off or n/a) for all system-dataset-
combinations of a specific system, a specific dataset or simply for all.

Extension Actions
Extensions allow for several 'actions' (similar to groups, see Groups),
namely Set Visible, Set Not Visible, Expand, Set Private and Set Not
Private.
The actions are activated by, either the respective sub-menus of the
menu-item Extensions in the context-menu of policies, functions and
parameters, or by the respective buttons in the Extensions-section of
the ribbon Country Tools.
In addition, the Global Extensions-section of the ribbon

Administration Tools provides buttons for the actions Set Private and
Set Not Private. While however the menu-items and the buttons in
the ribbon Country Tools show extensions of the respective country
as well as global extensions, the buttons in the Administration Tools
only list global extensions.

Set Visible: all elements of the extension are shown in the
sense that a possible hidden-state is removed, however, the
parent-elements are not automatically expanded.
Set Not Visible: all elements of the extension are hidden.
Expand: all elements of the extension are shown (possible
hidden-state removed) and actually made visible by expanding.
Set Private: all elements of the extension are set private.
Set Not Private: removes the private-attribute from all elements
of the extension.

Note that, if the actions Set Private and Set Not Private are applied
on a global extension, a request is displayed asking whether the
user wants to perform the action for all countries.
In this context it may be useful to know that the intention of this
private (un)setting is to allow for customised Releases: One could
release a, in general private, extension to a selected group of people
by using Set Not Private for this extension before hitting the
Generate Public Version button. Then one can use Set Private to
undo the 'publication' for further Releases.

Also note that all actions are ignorant in the sense of not caring
about any current or contradicting state: Set Visible does for
example not care if elements were actually hidden before. Similarly,
if one first sets Group A visible and then Group B not visible, with an
element belonging to both groups, the element will be not visible in
the end.
Finally note that the actions are in principle not permanent, i.e. get
lost once a country is closed. The visible-state is however part of the

view settings, which can be stored (see option in the Project
Configuration dialog).

[1] For the old executable that is the file SwitchablePolicyConfig.xml, for the new executable
it is the file Extensions.xml, both stored in the respective Config-folder

[2] Actually the 'feature' is a remainder of a previous implementation of extensions, where
the functions of extension-policies did not show switch, but the usual settings
(on/off/na/toggle). Thus, permanently switched off functions mainly exist to keep this
previous implementation compatible. Usually pure information should be provided by other
means, e.g. comments or documentation. This also justifies the a bit tedious way to
implement a permanently switched off function, if the policy is already added to any
extension, as it requires removing the policy from the extension(s), implementing the
function as switched off or n/a, and aftewards re-adding the policy.

Formatting

Conditional Formatting
To access the Conditional Formatting dialog select the ribbon
Display and click the button Conditional Formatting. The dialog
supports two ways of conditional formatting:

Conditional Formatting
The upper part of the dialog allows for adding, removing and setting
the characteristics of conditional formats (in the following short CF).
CF's are formats, here text and background colour, which are
applied to a parameter value, if it fulfils the CF's condition.
Adding a CF: Click the Add button (the button with the green plus)
to add an undefined CF, i.e. a row in the list of CFs.
Removing a CF: Select the row of the CF and click the Delete
button (the button with the red cross) to remove it from the list.
The CF's condition defines the criteria the parameter value must
fulfil. It has the form "{pattern} OR {pattern} OR {pattern}" etc. That
means, to fulfil the condition, the parameter value must match one of
the patterns between the curly brackets, where a pattern consists of
characters and the wildcards * (for zero or more arbitrary characters)
and ? (for one arbitrary character). For example the condition "{*#m*}
OR {*#y*}" is fulfilled by parameter values like "200#m" or
"50#y+yem*10%". Please note that the user interface tries to
interpret the condition as far as possible and ignores faulty parts. As
an example, the faulty condition "{*#m*} OR {*#y*" would be
recognised as "{*#m*}", i.e. the second incorrect part is ignored (note
the missing second curly bracket).
Systems to apply the CF on: The column Systems to Apply in the
CF's row indicates the systems the CF should be applied on. To
change this setting, click the respective cell with the left mouse
button. In the appearing dialog select the respective systems and
press OK to overtake them into the table.

The CF's text and back colour: The columns Back Color and Text
Color in the CF's row define the respective colour settings of the CF.
To change them, click the respective cell with the left mouse button.
In the appearing colour dialog select the desired colour and press
OK to overtake it into the table. To set the colour back (i.e. use no
special back or text colour for the CF), right click the respective cell
and select Clear Color.

Differences to Base System Formatting
The lower part of the dialog allows for highlighting differences of a
system's parameter values in comparison to the parameter values of
another system. It lists all available systems (in the column System)
and, if available, the system to compare with, i.e. the base systems
(ergo listed in the column Base System). The base system is defined
by a click in the respective cell, which opens a dialog that allows for
selecting an appropriate system. A text and/or back colour can be
defined to accomplish the formatting, in the same way as described
above for conditional formatting. In order to maintain a certain
consistency over countries, the button Restore Default Formatting,
allows for setting the (back and text) colours for all system/base
system pairs back to a common default.
You also have the option to expand any differences between a
System and its Base System, by ticking the box in the column
Expand Differences. This will make all differences "immediately
visible" by expanding any functions and policies that contain different
values, and it is independent to the formatting (colours) you applied.
It is recommended to use text colour formats for CF and back colour
formats for highlighting base system differences (or vice versa), if
applied on the same system, to avoid conflicting formats.
Click OK to confirm any changes or Cancel to close the dialog
without any consequences. Note that changes are only definite once
the country is saved. Before that you can still use the undo
functionality (see Working with EUROMOD - Undo and redo) or
close the country without saving.

Automatically setting the Base System Formatting
You can access this functionality from the ribbon Display by clicking
the button Automatic Conditional Formatting. This function will try to
match all the Systems according to their names and automatically
select the appropriate Base System for each one (but will only do so
if a Base System does not already exist for this System). For these
Systems that it was able to find and assign a Base System, it will
also set the formatting to the Default colours. Note that this function
is only able to match standardized System names, such as
"CC_YYYY" (where "CC" is the short country code and "YYYY" is
the 4-digit year) or "CC_YYYY_SomethingElse" (where
"SomethingElse" can be anything at all). For the system DK_2012
the function will for example try to find Base System DK_2011, for
the system DK_2012_reform it will try to find Base System DK_2012.
If the function cannot find a match for a given System, then it will not
change anything.

Groups
A Group is a collection of policies, (single) functions and (single)
parameters. This is a purely visual feature which allows for marking
items to be connected in a certain way, but has no effect on the
model run.
Groups are characterised by Group Markers: little coloured
symbols in the row-number column of the spine. In addition to the
visual aspect, they allow for actions like show, hide or expand.
Administration and application of Groups is carried out via a
respective group of buttons in the Display-tab and/or via the context
menu.

Adding Groups
To add a Group click the button Administrate in the Groups section
of the Display-tab. This opens a dialog allowing for adding, changing
and deleting Groups. For defining the look of the Group click the
Look column of the Group’s row.

Adding policies, functions and/or parameters to Groups
There are two possibilities: either use the Add to button in the
Groups section of the Display-tab, or use the Groups/Add to subitem
of the context menu. Note that all selected
policies/functions/parameters are added to the Group. Also note that
the adding also concerns all sub-items, i.e. if a policy belongs to a
Group, all (current and prospective) functions and parameters of the
policy automatically belong to the Group – likewise for functions.
Finally note that only those Groups are listed, where the concerned
item(s) not already belong(s) to.

Removing policies, functions and/or parameters from
Groups
There are two possibilities: either use the Remove from button in the
Groups section of the Display-tab, or use the Groups/Remove from

subitem of the context menu. Note that all selected
policies/functions/parameters are removed from the Group. Also
note that only those Groups are listed, where the concerned item(s)
(currently) belong(s) to.

Group Actions
There are two possibilities to activate any group action: either use
the buttons Set Visible, Set Not Visible and Expand in the Groups
section of the Display-tab, or use the respective subitems of the
context menu.
Set Visible: all elements of the Group are shown in the sense that a
possible hidden-state is removed, however, the parent-elements are
not automatically expanded.
Set Not Visible: all elements of the Group are hidden.
Expand: all elements of the Group are shown (possible hidden-state
removed) and actually made visible by expanding.
Note that these actions are ignorant in the sense of not caring about
any current or contradicting state: Set Visible does for example not
care if elements were actually hidden before. Similarly, if one first
sets Group A visible and then Group B not visible, with an element
belonging to both groups, the element will be not visible in the end.
Also note that the actions are in principle not permanent, i.e. get lost
once a country is closed. The visible-state is however part of the
view settings, which can be stored (see option in the Project
Configuration dialog).

Marking nodes with colour
Select the rows of the policies, functions and/or parameters you want
to equip with a background colour. A single row is selected by simply
clicking it. A range of rows is selected by selecting the first row, then
pressing and holding the Shift key while selecting the last row. Light
blue back colour shows the selection. For a more detailed
description of how to select cells see Working with EUROMOD -
Selecting components and values. Then select the ribbon Display
and choose the desired colour in the Marking group. To clear the
colour of a group of policies, functions and/or parameters, select the
respective rows, to then click the button Clear in the Marking group.
To clear any colour, click the button Clear All in the Marking group.
Note that the colour is applied to the Policy, Grp/No, Comment and
system columns (see Working with EUROMOD - Conditional
formatting).

Setting bookmarks
Setting a bookmark
Select the row of the policy, function or parameter you want to
bookmark, select the ribbon Display and click the button Set
Bookmark. Entering a name in the appearing dialog and confirming
with OK adds the bookmark alongside the Undo/Redo buttons in the
top left corner of the user interface.
Moving the mouse over the bookmark shows its name. Moreover,
the symbol displayed indicates whether the bookmark refers to a
policy (symbolised by a blue ball), function (symbolised by the
function symbol) or parameter (symbolised by a star).

Applying a bookmark
Clicking the bookmark sets the focus on the bookmarked row and, if
necessary, makes the row visible by expanding the policy/function it
belongs to.

Removing a bookmark
Right click the bookmark you want to remove and select the menu
item Remove from Quick Access Toolbar.
Note that bookmarks are personal settings, i.e. they are not reflected
in the country's parameter files and therefore not shared with other
users. This implies that saving has no effect on bookmarks and undo
is not available. Use the approach described above to remove
bookmarks.

Administration of EUROMOD projects
A EUROMOD project is actually not much more than a notation of a
folder containing the EUROMOD file structure (see EUROMOD
Installation and Architecture - EUROMOD content (parameter files)).
In fact, the user interface always points to such a folder and its main
task is to allow for visualising, administrating and editing its content.
In other words the user interface always refers to a concrete
EUROMOD project.
In practical terms this means that a user can easily switch from one
project to another. For example she can have one project containing
the " EUROMOD core project", i.e. the one she gets from the
EUROMOD team. Then she may have a project where she
implements changes for the purpose of analysing certain policy
changes. Then she may have another project where she implements
changes for the purpose of analysing other policy changes, etc.
Switching between the projects is accomplished via the item Open
Project of the main menu. [1] See Working with EUROMOD -
Administration of EUROMOD projects - Open project for further
information.
The user also may want to generate a new project. This is described
under Working with EUROMOD - Administration of EUROMOD
projects - New project.
Except from describing a certain EUROMOD file structure, a project
also has some (project specific) features. For example, it may have a
specific Input Folder, meaning that it points to other datasets as e.g.
the EUROMOD core project. Another quite important feature is
whether a project is version-controlled or not. See Working with
EUROMOD - Administration of EUROMOD projects - Configure
project for further information.

[1] You find the main menu above the Run EUROMOD button, that can be seen when
clicking on the Countries ribbon. Press the little arrow to open it.

Generate a new EUROMOD project
The item New Project of the main menu[1] (which can also be found
in the Version Control ribbon in the ADVANCED OPTIONS group)
opens a dialog which allows for generating a new EUROMOD
project. For a description of what a EUROMOD project is see
Working with EUROMOD - Administration of EUROMOD projects.
The user interface requires the following information for generating a
EUROMOD project:

Project Path and Project Name
The Project Path is the path where the new project is to be stored.
The user interface will generate a folder using the name you
provided in the Project Name field, containing the EUROMOD file
structure at the indicated path. Note that the folder named in Project
Path must already exist and that it must not contain a folder Project
Name already. For more information on the EUROMOD file structure
see EUROMOD Installation and Architecture - EUROMOD content
(parameter files).

Base Project
In fact, a EUROMOD project will rarely be generated "from scratch",
usually it will be a copy of an existing project, that then can be
adapted. Consequently, the generate-project-dialog allows for
selecting this Base Project, with the following options:

Project on Disk: With this option selected, the dialog allows for
selecting (or typing) the name of the folder, where the base
project is stored[2]. Note that this will be the default choice if you
are not logged into Version Control.
Project on VC: With this option selected, the dialog allows for
selecting a base project stored in the EUROMOD version
control system. Once the option is ticked, the combo-box
alongside will list all the VC projects you have access to.

Note however, that this option is only available if the user is
connected to the EUROMOD version control system (in which
case, it is actually the pre-selected option). Consequently, if this
is not (yet) the case, clicking the option Project on VC opens the
version control login dialog, asking for a user name and
password (see EUROMOD Version Control - Logging in and
out). Also note that, when first ticking the option, it may take a
short while, as the available projects must be requested form
the VC-system. For further information on the EUROMOD VC-
system see EUROMOD Version Control).
No Base Project: As mentioned above, projects will rarely be
generated "from scratch", but it is still possible and enabled by
selecting this option.

Content of the new project
The button Define Content allows for specifying which parts of the
base project are overtaken into the new project. Consequently, it is
not available if the option No Base Project is selected. Moreover, an
error message will be displayed on clicking it, if no base project was
selected yet.
Otherwise clicking the button opens a dialog which lists all units
(countries, add-ons, config files etc.) of the base project. The user
can then tick the units she wants to overtake into the new project.

[1] You find the main menu above the Run EUROMOD button that can be seen when
clicking on the Countries ribbon. Press the little arrow to open it.

[2] At the local disk or some network drive available to the user.

Open a EUROMOD project
The item Open Project of the main menu[1] opens a dialog which
allows for switching the EUROMOD project to which the user
interface refers to. For a description of what a EUROMOD project is
see Working with EUROMOD - Administration of EUROMOD
projects.
The dialog offers two ways to select the project:

Selecting a project that was opened by the user interface before
Selecting a project that was not yet opened by the user
interface, but is stored on the user's disk[2]

Selecting a project that was opened before
For this purpose, select the respective project from the list of
available projects displayed by the combo-box Project Folder. Note
that the user interface "knows" about the available (i.e. at least once
opened) projects, because it stores "user settings" (in fact project
settings) for each of them. These user settings contain amongst
others the project's path.

Selecting a project that was not yet opened
For this purpose, click the button alongside the field Project Folder
and select the respective path with the help of the opened file-dialog.
If you know it by heart you can also type the project's path.
Note that the selected folder must contain the EUROMOD file
structure (see EUROMOD Installation and Architecture - EUROMOD
content (parameter files)).

Opening the user interface for the very first time
There is in fact an alternative instance when a user becomes to see
the open-project-dialog than via the menu-item Open Project. That
is, when the EUROMOD user interface is opened for the very first

time.[3] In this case the dialog shows an additional button New ...,
which allows for opening the new-project-dialog (see Working with
EUROMOD - New project) and thus, instead of opening an existing
project, generating a new one.

[1] You find the main menu above the Run EUROMOD button, that can be seen when
clicking on the Countries ribbon. Press the little arrow to open it.

[2] ... or some other path the user has access to (e.g. a network drive).

[3] ... or if the user-settings (i.e. the information that is stored internally about the user's
personal specifications) are invalid. The most likely reason for invalid user-settings is that
they refer to a project folder that does not exist (any more) or does not contain the
EUROMOD file structure.

Configuration dialog
The configuration dialog, which is opened by selecting the main
menu's item Project configuration, offers options to configure the
project currently loaded by the user interface. There are four tabs,
which provide the following options.

Tab General

Output Folder
This setting instructs EUROMOD to generate, as a default, any
output at the indicated path. Type the respective path into the field or
select it with the folder search dialog opened by the button alongside
the field. Note that this default output path can still be changed for a
particular run in the respective field of the run dialog (see Working
with EUROMOD - Running EUROMOD paragraph Selecting the
output path).

Input Folder
This setting instructs EUROMOD to look, as a default, for input data
at the indicated path. Type the respective path into the field or select
it with the folder search dialog opened by the button alongside the
field. Note that this default input path can still be changed for a
particular dataset in the Configure Databases dialog (see Working
with EUROMOD - Configuring datasets).

Set Standard Input/Output-Paths
Pressing this button sets the Output Folder to ProjectPath\Output
and the Input Folder to ProjectPath\Input.

Close User Interface with Last Country
If this option is ticked the user interface is closed, once the last
country (and add-on) is closed. If the option is not ticked, the user
interface is not closed in this case, but displays the EUROMOD logo
(as it does when it is opened and no country is yet loaded).

Tab Version Control

Is Version Controlled
If this option is checked, the user is automatically connected to
version control when the project is loaded, provided that the project
is version controlled. For further information see EUROMOD Version
Control - Logging in and out.

Tab Auto save
This tab allows for defining the auto-saving interval, or to dis/enable
auto-saving. For further info see Working with EUROMOD -
Changing countries' tax-benefit-systems - Saving, saving as and
auto-saving, paragraph Auto-saving.

Tab Warnings
The user interface issues at appropriate points warnings with the
option "Do not reshow this warning". If the respective box is checked
this type of warning is not reshown, even if the interface is closed
and opened again. The tab Warnings allows for defining which types
of warnings should be displayed.

Using the help system
To access the user interface's help system press the F1 key or click
the button Help in the ribbon Help & Info. This leads directly to the
help page describing the part of the interface you are working on or,
if no specific help is available, to the help table of content.
Moreover, pressing the F5 or F6 key in the main window of the user
interface leads to an explanation of the selected function (if any
function is selected), where the F5 key leads to a descriptive
explanation, usually with a couple of examples, whereas the F6 key
leads to a full (but brief) description of the parameters of the function.

Getting info on User Interface Version
The version of the User Interface one is currently working with can
be obtained by clicking the button Version in the ribbon Help & Info.

Getting the End-user Licence
The details of the End-User Licence Agreement for the use of
EUROMOD (compiled version including plugins) can be obtained by
clicking the button Licence. It includes an annex (Annex A) with the
technical specifications of the software and Third-Parties' Libraries
used in EUROMOD.

Administration of countries

Adding new Countries/Add-ons
Adding countries
To add a new country to EUROMOD select the ribbon Administration
Tools and click the button Add Country. This opens a dialog allowing
indicating the Long Name and the Short Name of the country. The
former is the countries full name (e.g. Hungary, Germany, Greece,
Spain, etc.), the latter is the country code (e.g. HU, DE, EL, ES,
etc.).
Moreover, you are asked to indicate a Flag in portable network
graphic format (png). Ideally the size of the image is 28x17 pixels.
You can also select the image with the file search dialog opened by
pressing the button alongside the Flag field. If you do not indicate a
flag image, a default image with a question mark will be used.
Confirming the specifications with OK adds the country and instructs
you to go to the country gallery (i.e. the ribbon Countries) to load the
new country. For information on the files, which are created by the
add process see EUROMOD Installation and Architecture.

Adding add-ons
The ribbon Administration Tools contains buttons for deleting and
adding add-ons. Add-ons can also be exported from a country (see
Working with EUROMOD - Importing and exporting add-ons) or
created by adapting an existing add-on (see Working with
EUROMOD - Saving, saving as and auto-saving).

Deleting countries
To delete one or more countries from EUROMOD select the ribbon
Administration Tools and click the button Delete Country. In the
appearing dialog select the countries you want to delete and confirm
by pressing the Delete button. Note that the action is final and
cannot be undone. Also note that the countries must not be loaded -
if they are an error message is issued.
For information on the files, which are deleted by the process see
EUROMOD Installation and Architecture.
Deleting add-ons
To delete one or more add-ons from EUROMOD select the ribbon
Administration Tools and click the button Delete Add-On. The
process is the same as for deleting countries.

Importing countries
To import a country to EUROMOD select the ribbon Administration
Tools and click the button Import Country. This opens a dialog which
requests two pieces of information:

Import Country Folder
This folder is supposed to contain the country's XML-files (see
EUROMOD Installation and Architecture - EUROMOD content
(parameter files) - Format of country parameter files). You can type
the Import Country Folder or select it with the search dialog, opened
by pressing the button alongside the field.
Moreover, the folder may contain the country's flag as an image file
named cc.png.[1] If the folder does not contain a flag image, a
default image with a question mark will be used.

Short Name
If the country does not already exist, the Short Name is the name of
the Import Country Folder.[2] For example, if you are importing
Barbados the short name would probably be BB. If the country is
another version of an existing country, the Short Name indicates an
alternative short name for this second version. For example, if you
are using an alternative version of Belgium you may indicate B2 as
Short Name.
Confirming the specifications with OK imports the country[3] and
instructs you to go to the country gallery (i.e. the ribbon Countries) to
load the imported country.

[1] cc stands for the country's short name (e.g. FR for France, EL for Greece, ...). The flag
ought to be in portable network graphic format (png) and is ideally sized 28x17 pixels.

[2] and the country's acronym as used in the names of the country's XML- and flag-files.

[3] That means the user interface copies the folder into the countries' folder. Moreover, if the
Short Name is different from the name of the Import Country Folder, it does all the renaming

of files and adapting of parameter files for you.

Exporting & Importing Systems
Exporting systems
To export (a) system(s), select the ribbon Country Tools and click the
button Export System(s). In the appearing dialog select the
system(s) you want to export and indicate an Export folder. You can
use the button beside the field to open a file search dialog, allowing
for selecting a respective path. If you want to remove the exported
systems from the country select Export and delete, if you want to
export the systems without removing them select Export only. Click
OK to start the procedure.
The export procedure creates a folder named after the country's
short name (e.g. a folder "DK" if systems are exported from
Denmark), which encloses parameter files, which contain the
exported systems. In fact the procedure is very similar to the save-as
procedure (see Working with EUROMOD - Saving, saving as and
auto-saving), with mainly two differences. Firstly (and obviously) the
not exported systems are removed from the "export country's"
parameter files and, if the option Export and delete was selected, the
exported systems are removed from the origin country's parameter
files. Secondly (and less obviously) the origin country's as well as
the export country's parameter files are "cleaned". That means all
policies, functions or parameters, which contain only n/a values for
all remaining systems, are removed. To understand this, imagine
having implemented a reform scenario by using many new policies,
functions and parameters. If the reform's system is exported (for
later use or storage purposes) it would leave a lot of garbage in the
country's parameter files. If however all elements only used for the
reform are set to n/a in all other systems, the export procedure cares
for their removal.
Note that the export procedure also stores the data configurations of
the exported systems, and, if the option Export and delete was
selected, deletes them in the country's parameter file.

Importing systems
To import systems to a country select the ribbon Country Tools and
click the button Import System(s). In the appearing dialog first select
the folder where the systems are stored by using the folder button.
This could be either a folder created by the export procedure (see
above) or a folder created with the Save As procedure (see Working
with EUROMOD - Saving, saving as and auto-saving) or even
another country's folder. Once an appropriate folder is selected, the
systems contained in the respective parameter files are displayed in
the Systems list. Select one or more systems and click OK to start
the procedure.
The import procedure has to match the imported system(s) with the
systems already included in the country's parameter file. That
means, in order to present them in the country's spine, it has to add
policies, functions or parameters, which only exist in the imported
systems. These elements are set to n/a in the existing systems,
amongst others, to allow for "tidy" removal with the export procedure
(see above).
Note that the import procedure asks for a name for an imported
system (only) if a system with the same name already exists.
Moreover, if the country of the imported system(s) does not
correspond with the import country, the procedure asks whether the
polices should be renamed respectively, i.e. for example from
ILDef_ee to ILDef_hu, tin_ee to tin_hu, bsa_ee to bsa_hu, etc. if an
Estonian system is imported to Hungary. This allows aligning the
respective policies side by side.
Note that the import procedure also imports the data configurations
of the imported systems, if it finds respective information in the
import parameter files.
Also note that the import dialog offers a checkbox Match by Unique
Identifier. The box is only enabled when such an import is possible,
for which the first (but not only) condition is, that the systems are
imported from another version of the same country. For further
details please consult Working with EUROMOD - Comparing

versions of a country, paragraph Importing systems by matching
unique identifiers.
Finally note that the changes caused by importing or exporting
systems cannot be undone by using the undo functionality. However,
the user interface produces a backup before starting the action,
which can be restored via the button Restore in the ribbon Country
Tools. For more information see (Working with EUROMOD - Backup
- Restore).

Importing & Exporting add-ons
Importing add-ons
To import an add-on, select the ribbon Country Tools and click the
button Import Add-On. In the appearing dialog first select one of the
add-ons listed in the combo-box. Once an add-on is selected, the
systems of this add-on are listed in the left box. Select the add-on
system you want to import. Once an add-on system is selected, the
right box lists all systems of the country which can be used as base
for the selected add-on system. Select one of the systems and click
OK. This generates the respective add-on system and imports it into
the country. For further information on importing systems see
Working with EUROMOD - Importing and exporting systems. For
further information on add-ons see EUROMOD functions -
EUROMOD add-ons and the special functions AddOn_Applic,
AddOn_Pol, AddOn_Func and AddOnPar.

Exporting add-ons
To export an add-on, select the ribbon Country Tools and click the
button Export Add-On. The appearing dialog asks for the following
information respectively offers the following options:

Long Name: Indicate a descriptive name for the add-on (e.g.
marginal tax rates).
Short Name: Indicate a short name for the add-on, which will be
displayed in the add-on gallery. Ideally use two or three-
character abbreviations (e.g. MTR). Note that you cannot use an
abbreviation, which is already in use for another add-on, nor the
short name of a country (i.e. AT, BE, ..., UK).
Symbol: Indicate a picture in portable network graphic format
(png). Ideally the size of the image is 32x32 pixels. You can also
select the image with the file search dialog opened by pressing
the button alongside the Symbol field. If you do not indicate a
symbol, a default image will be used.

Add-On System / Base System: The "technique" to generate
the add-on is to identify the differences between the indicated
Add-On System and Base System, in order to summarise the
differences in the add-on. That means, for example, if a policy is
only used in the add-on system but not in the base system, a
respective AddOn_Pol function is generated in the add-on. Note
that "not used" in this context is identified by the switch of the
base system being set to n/a. For further information on add-ons
see EUROMOD functions - EUROMOD add-ons and the special
functions AddOn_Applic, AddOn_Pol, AddOn_Func and
AddOnPar.
Use symbolic identifiers: If this option is not selected the add-
on refers to elements of the base system (policies, functions and
parameters) by their GUIDs (Globally Unique Identifiers). This is
the recommended approach if there are no plans to use the
add-on on for several systems or countries. If the option is
selected, the GUIDs are exchanged by not system specific
symbolic identifiers. However, developers need to be aware that
symbolic identifiers use an identification mechanism which is
more flexible (e.g. it supports using the add-on system for
several systems or countries), but also less secure. Particularly
symbolic identifiers are not unique. For further information see
EUROMOD Functions – Identifiers and the placeholders =cc=
and =sys=.
Use country placeholder: This option can be selected if the
add-on is to be used for several countries. It changes references
to policy names from e.g. yse_sl to yse_=cc=, and taxunit
parameters from e.g. individual_sl to individual_=cc=. For further
information see EUROMOD Functions – Identifiers and the
placeholders =cc= and =sys=.
Export and delete / Export only: If the former option is
selected, the add-on system is deleted after generating the add-
on. Moreover, the parameter file is "cleaned" (see the respective
paragraph in Working with EUROMOD - Importing and exporting

systems for a description of the cleaning process). If the latter
option is used, the country’s parameter file is not changed.

Confirming the specifications with OK generates the respective add-
on and instructs you to go to the add-on gallery (i.e. the ribbon Add-
Ons) to view the new add-on.
Note that using the export mechanism for generating an add-on that
can be used for another country than the one it was extracted from
must be seen as a starting point only. It is most likely that the
developer, after exporting, has to do some adaptions to make the
add-on "multi country compliant". As an example, the export
mechanism may link an add-on policy, which is located before the
standard output policy to the last country (specific) policy (by using
Insert_After_Pol) instead of the (common) standard output policy (by
using Insert_Before_Pol). Also the above mentioned insecurity of
using symbolic identifiers (and, though less critical, country
placeholders), should be taken into account.
Also note that the changes caused by importing or exporting add-ons
cannot be undone by using the undo functionality. However, the user
interface produces a backup before starting the action, which can be
restored via the button Restore in the ribbon Country Tools. For more
information see (Working with EUROMOD - Backup - Restore).

Backup - Restore
Some actions, like for example importing and exporting systems, do
not allow for undo (see Working with EUROMOD - Undo and redo).
[1] However, in order to still enable going back to the state before the
action, the user interface generates a backup of the XML-files, which
allows for restoring this state.

Backup
Before the action starts, the user interface stores all changes to the
XML-files and clears the undo-list. The latter means that no previous
actions can be undone anymore. Then it generates the backup in
form of a folder, which is stored in the backup-folder of the user
interface's temporary folder (see EUROMOD Installation and
Architecture - EUROMOD content (parameter files) – Organisation of
files). The folder is called cc_yyyy-mm-dd_hh-mm-ss, for example
RO_2013-12-29_14-12-00, for a backup of Romania on the 29th
December 2013, at twelve past two pm.[2] After the (successful)
termination of the action the user interface issues a message, which
indicates the existence of the backup, how the file is called and
where it is stored. The message also informs about the possibility to
restore this version via the button Restore in the ribbon Country
Tools.
Note that backups are stored for three days in the temporary folder.
Older backups are automatically removed by the user interface.

Restore
Clicking the button Restore in the ribbon Country Tools opens a
dialog allowing for selecting the backup-folder as described in
paragraph Backup above.[3] Once the appropriate folder is selected,
the user interface performs the restore and informs about success
(or failing).

[1] The concerned "actions" are quite complex procedures, in fact a collection of connected
actions.

[2] As one may guess, the folder contains Romania's XML-files (RO.xml and
RO_DataConfig.xml). If the backup concerns an add-on, it still takes the form of a folder
called e.g. MTR_2014-01-12_10-57-18, containing the add-ons XML-file (i.e. MTR.xml).

[3] In fact the backup-folder must contain the country's (or add-on's) XML-files, but actually
it is not necessary, that the folder was produced by a backup generated via the user
interface.

Comparing versions of a country
It may happen that a country is concurrently adapted by two (or
more) developers - for example the country is worked on by a JRC
developer as well as the country team - which usually asks for later
consolidating of the different versions. The user interface offers
support for this task by providing an option to compare versions of a
country.[1]

Performing the comparison
Open (the user interface's version of) the country and click the
button Compare Versions in the ribbon Country Tools. This opens a
dialog allowing for selecting the country folder to compare with.[2]
Once the comparison version is selected the user interface starts its
task, whereat it firstly searches for a system with the same unique
identifier (in the following abbreviated as UID) in both versions. If it
does not find such a system it reports that a comparison is not
possible. The user interface uses this "match system" to
"symmetrise" the versions, i.e. to take account of the fact that each
of the versions may contain components (policies, functions,
parameters) which do not exist in the other version, and thus cannot
be displayed side by side with a correspondent component (that
means, amongst others, that components which do not exist in the
interface's version need to be added at an appropriate place).
Further on the user interface imports all systems of the comparison
version. The names of the imported systems are prefixed if with 1_
(e.g. system BE_2010 is called 1_BE_2010)[3], unless no such
system exists in the user interface's version, in which case the name
is not changed (e.g. system BE_2014, which exists only in the
comparison version is still called BE_2014). Then the user interface
compares each "pair of twin systems", where the twins are identified
as systems with the same UID in the user interface's and the
comparison version. Please note, that systems with just equal
names but unequal UIDs are not recognised as twins! The imported

system is still called e.g. 1_BE_2013, however point c) below applies
instead of point b).
The comparison of twin systems consists of discovering differences
in the values of policies, functions and parameters of the two
systems, where these components are again matched by their UID.

Results of the comparison
There are three possible comparison results for each system
imported from the comparison version:

No differences are found between the twin systems: In this case
the user interface removes the imported twin (e.g. system
1_BE_2010), as it does not provide any additional information.
The user is informed about the equality by an information box
displayed after the comparison.
The twin systems show differences: In this case the user
interface highlights the concerned cells with colour and expands
all policies/functions which show differences. More precisely it
implements a "Differences to Base System Formatting" (see
Working with EUROMOD - Formatting - Conditional formatting).
The imported system does not have a twin: In this case the user
is informed about this new system by an information box
displayed after the comparison.

The information box displayed after the comparison may also report
the following: "For differences which cannot be reflected in the spine
move the mouse over the red and green info markers in the group
column.". The next paragraph explains what this means.

Differences covered by "info markers"
If the above mentioned information is issued, the Group column
shows so called "info markers", which are little red or green squares.
Moving the mouse over a cell with an info marker shows an
information box, which tells for example:

refers to system(s): 1_BE_2005 1_BE_2006 1_BE_2007 1_BE_2008 1_BE_2009
1_BE_2010 1_BE_2011 1_BE_2012 1_BE_2013
(info created 27/11/2013 15:33:06)
comment: only excess amount over 11.51 LVL is paid

This info denotes that the concerned parameter, function or policy
has a different comment in the comparison country (see 3rd line).
The user interface uses this form to hint at different comments in the
two version, because comments are not system specific and thus
there is no obvious "place" (like for parameter values and switches)
where to indicate the difference. The first two lines are shown with
each info box and are just info on when the markers were created
and which systems are concerned (i.e. the systems imported from
the comparison version).

Possible differences indicated by info markers
Differences in comments are not the only and not the most relevant
not system specific discrepancy. More relevant are for example
differences in the order of policies, functions and parameters, which
may be indicated like the following example shows:

refers to system(s): 1_BE_2005 1_BE_2006 1_BE_2007 1_BE_2008 1_BE_2009
1_BE_2010 1_BE_2011 1_BE_2012 1_BE_2013
(info created 27/11/2013 15:33:06)
function order:
1. BenCalc
3. ArithOp
2. Elig
4. BenCalc
5. BenCalc
6. Allocate

This means that in the comparison version the function Elig comes
before the function ArithOp (the listing refers to the order in the
comparison version, while numbers refer to the order in the user
interface's version). Note that parameter- and function-order
differences are indicated by an info marker alongside the function
respectively policy containing them, whereas policy-order differences

are indicated by an info marker alongside the first policy (as the
"containers" of policies, i.e. systems, do not have a Group column
where the info marker could be displayed).
More relevant not system specific differences are denoted by red
info markers. They concern policy/function/parameter order, policy
names, parameter settings listed in the Policy column (e.g. names of
constants/variables in functions DefConst/DefVar), private settings of
policies/functions and parameter groups.
Less relevant not system specific differences are denoted by green
info markers. They concern comments and private comments.

Handling info markers
In order to be able to copy parts of the information provided by the
info boxes, e.g. the text of a comment, one can display the
information in a little editable window. To do so, select the cell with
the info marker and press the F7 key.
Together with the Compare Versions button the user interface
provides three further buttons: Remove Info Markers, Store Info
Markers and Load Info Markers. To understand this, one needs to
know that info markers are not permanent, in the sense that, if the
interface is closed and reopened, the info markers are gone.[4] This
may be bothersome if for example one wants to continue working
only the next day, but still not lose the info markers. Therefore the
two latter buttons (Store, Load) allow storing info markers before
closing and reloading them on reopening the interface.[5] The former
button (Remove) allows for removing info markers to get rid of
possibly disturbing red and green squares.

Differences not covered by the comparison
The comparison performed by the Compare Versions option only
concerns what is displayed in the main view of a country. That
means any differences in data settings, system settings and
conditional formatting are not covered.

Importing systems by matching unique identifiers

The Import Systems dialog (see Working with EUROMOD -
Importing and exporting Systems) provides a checkbox Match by
Unique Identifier. The box is only enabled when such an import is
possible. Loosely speaking that means that the systems need to be
imported from another version of the same country. More precisely it
means that there needs to be at least one system with the same UID
in the country from which the systems are imported. If the box is
ticked, the import follows the same rules as in the Compare Versions
procedure. That means it matches the systems by using the UIDs of
systems, policies, functions and parameters.
The advantage of this approach is that one may get a better
conformity between the existing and the imported systems. The main
disadvantage is however, that one may not get runnable systems, as
the approach does not correct for not system specific differences.
Most importantly it does not correct for different orders of policies
and functions, for different settings of parameter groups (Group
column) and for renamings in the Policy column (e.g. changing a
component of an incomelist or renaming a constant). Instead it
leaves the respective adaptions to the user by providing info markers
as described above. (If necessary) The user is warned about the
discrepancies and informed about the existence of info markers by a
message issued after the import procedure.

"Undoing" the changes caused by the comparison
Note that the changes caused by the comparison cannot be undone
by using the undo functionality. However, the user interface produces
a backup before starting the comparison, which can be restored via
the button Restore in the ribbon Country Tools. For more information
see (Working with EUROMOD - Backup - Restore).

[1] For the sake of simplicity the following descriptions refer to countries, however
comparing versions is available for add-ons as well.

[2] For information on the country folder see EUROMOD Installation and Architecture -
EUROMOD content (parameter files) - Format of country parameter files).

[3] More precisely, the systems are prefixed with consecutive numbers, i.e. if e.g.
1_BE_2010 exists in the user interface's version too, the imported system is called
2_BE_2010.

[4] Technically that means that they are neither stored in the country XML-files nor in the
user settings (like e.g. bookmarks).

[5] The ability to store and reload info markers is the main reason for equipping the
information with a date. This hints at the fact that the displayed information may not be up-
to-date anymore.

Generating a EUROMOD public version
A EUROMOD public version is a version that is released for public
use. Essentially, private countries/add-ons, systems, policies,
functions, parameters, datasets and comments are removed from
such a version[1], i.e. parts, which are not yet ready or not foreseen
to be visible to the public.
User interface support for generating a EUROMOD public version is
available by selecting the ribbon Administration Tools and pressing
the button Public Version. Note that a public version can only be
generated if all countries are closed. A respective message is issued
if any country is open. The appearing dialog allows for specifying a
path for the public version, as well as the version number. Note that
both specifications are compulsory. Pressing OK starts the
process[2], which, if terminated successfully, indicates where the
public version was stored. Note that the public version is not loaded.
To check the result one has to change the user interface's current
"content" via the main menu's item Open project (see Working with
EUROMOD - Open project).
To check which countries/add-ons, systems, policies, functions,
parameters and datasets are private before generating the public
version (or in fact whenever requested) click the dialog's button
Check Private. This generates a simple text file listing the private
components. The file, called PrivateComponents.txt, is (preliminary)
stored in the temporary folder (see EUROMOD Installation and
Architecture) and opened after its generation.
See Working with EUROMOD – Changing country settings, Working
with EUROMOD – Changing system settings, Working with
EUROMOD – Setting policies, functions and parameters private,
Working with EUROMOD – Configuring datasets and Working with
EUROMOD – Private Comments for information on how to set
components private.

[1] In addition all user-set colours are removed. Morover default conditional formatting is
installed (see Working with EUROMOD - Conditional Formatting - paragraph "Automatically
setting the Base System Formatting" and node that any formats, other than the default are
overwritten).

[2] The process generates a copy of the folder EuromodFiles (see Installation and File
Structure - Organisation of files) at the indicated path. This copy is then adapted by
removing all private systems, policies, functions and datasets. If all systems of a country are
private, the whole country is deleted.

Handling of the decimal and thousand
separators in EUROMOD
The user interface uses point as decimal separator and does not
allow for thousand separators, e.g. 1234.6 is a valid number and will
be interpreted as one thousand - two hundred - thirty four point six.
1.234 is a valid number and will be interpreted as 1 point two
hundred - thirty four. 1,234.6 and 1.234,6 are no valid numbers.
Data may use point or comma as decimal separator (see Working
with EUROMOD - Configuring datasets).
Output is always produced with the decimal separator configured on
the user’s PC (see EUROMOD Basic Concepts - EUROMOD input
and output).

Obtaining information upon updating
progress
The ribbon Administration Tools provides a button Updating
Progress, which allows for opening a dialog that provides options to
obtain information upon the model's "updating progress". That
means EUROMOD developers (and users) can assess which policy
years are implemented for each country and which datasets are
available to run the respective systems.
The dialog is organised as a register with four tabs. The first tab
allows for controlling the information which is to be provided, while
the latter three display the respective information:
Tab Settings: As mentioned above, this tab serves controlling the
information which is displayed in the other tabs. The list on the left
hand side allows for selecting the countries which are included,
which buttons to select All or No country. Clicking the button
Generate produces respectively refreshes the information as
described above for the selected countries. The checkboxes on its
left allow for including/excluding parts of the information. The box
Export to text files provides options for outputting the current content
of the three information tabs into text files. The field Folder must
indicate an output path where to store the resulting text files. The
folder can be selected with the button right of the field. The three
fields below must indicate the file names for storing the information.
The checkboxes left of them allow for including/excluding the
respective tab.
Tab Systems: displays a table which lists the policy years (columns)
which are implemented for each country (rows). The crossing cell
indicates whether the respective system is "available", i.e.
presumably ready for use, "private", i.e. presumably not yet ready for
use or not existing: "-". These policy year columns only display
standard systems, i.e. systems following the naming convention
cc_yyyy. Other available systems, which are not covered by this, are

listed in the column other. If such a system is private, this is
indicated in brackets.
Tab Datasets: provides information on the available datasets for
each country. The columns display data years, which are extracted
from the dataset name, i.e. if the dataset's name is cc_yyyy_xxx
(e.g. be_2007_a3, uk_2009_lpc1, etc.) the dataset is listed in the
respective column. The rest of the columns indicate the datasets'
properties: i.e. their collection and income year and whether they are
private or not.
Tab Combinations: displays for each country the possible
combinations of implemented systems and available datasets, where
the crossing cells indicate whether this combination is only available
(x) or a best match (best). The information corresponds to that
shown in the data configuration dialog (see Working with EUROMOD
- Configuring datasets) and just allows getting information on several
countries at once.
Note that the information to generate the tables is taken from the
indications as provided in the countries' configuration dialogs (see
Working with EUROMOD - Changing system settings and Working
with EUROMOD - Configuring datasets) and is as accurate and up-
to-date as this base.

Save country XML-parameter-files formatted
The ribbon Administration Tools provides a button Save Formatted,
which allows for saving one or more countries' XML-parameter files
either as tab-delimited text files or (still) as XML-files (but) with line
breaks. To do so, in the dialog, select the countries which are to be
stored formatted. The buttons Select All and Select No allow for
selecting respectively deselecting all countries. Use the respective
radio buttons to specify whether you want to store the files in Text
Format or With Line Breaks. Finally specify the folder where the text
files should be stored in the field Export to Folder. You may use the
button right of the field to select a folder. Press OK to perform the
storage.
Concerning the option Text Format, please note that only part of the
information stored in the XML parameter files is available in the text
files. In principle the text files include what one sees in the expanded
policy spine. Information on system settings, private comments, etc.
are not available. Moreover, the text files contain only (part of the)
information stored in cc.xml but not information stored in
cc_DataConfig.xml. Also note that the first column indicates what a
line refers to, i.e. a POLICY[1], FUNCTION or PARAMETER.
For more information on the XML-parameter files see EUROMOD
Installation and Architecture - EUROMOD content (parameter files) -
Format of country parameter files.

[1] or reference policy: POLICY (REF)

Administration of EUROMOD variables
EUROMOD variables in a nutshell
All countries implemented in EUROMOD use the same set of
variables to store information taken from input data as well as
generated by the model. For example, a variable called yem is used
by each county to store employment income (taken from input data).
As another example, a variable called bch_s stores child benefits
calculated by the model. This approach does not only care for high
comparability over countries but also supports exchangeability in
facilitating task like, for example, taking some policy measure from
one country and implementing it in another.
At first view the names of EUROMOD variables may seem rather
none intuitive (e.g. dag for age). In fact, the names follow an
elaborated naming scheme, which is described in detail in the Data
Requirement Document (DRD). This brief description confines itself
to mentioning some features, which are useful in identifying the
meaning of a variable:

Variables generated by the model end with _s for simulated,
whereas variables taken from input data do not have such an
ending. For example bch is a child benefit taken from data,
whereas bch_s is a simulated child benefit.
The first character of a variable's name indicates its type, where
b stands for benefit (e.g. bch: b=benefit, ch=child), t stands for
tax (e.g. tin: t=tax, in=income), p stands for pension (e.g. poa:
p=pension, oa=old age), d stands for demographic (e.g. dag:
d=demographic, ag=age), l stands for labour market (e.g. les:
l=labour market, es=economic status), y stands for income (e.g.
yem: y=income, em=employment), a stands for assets (e.g. afc:
a=assets, fc=financial capital), x stands for expenditure (e.g.
xcc: x=expenditure, cc=child care), k stands for in kind (e.g.
ked: k=in kind, ed=education) and s stands for system (e.g.
stm01: s=system, tm=temporary variable).

The rest of the name is composed of two-character acronyms.
Take for example the variable tsceehl_s: t stands for tax, sc
stands for social insurance contributions, ee stands for
employee, hl stands for health and _s stands for simulated.
Thus the variable stores employee's health social insurance
contributions as calculated by the model.

EUROMOD variables are stored in a special EUROMOD parameter
file, the variable description file VarConfig.xml (see EUROMOD
Installation and Architecture - EUROMOD content (parameter files) -
Organisation of files for the storage place and EUROMOD
Installation and Architecture - EUROMOD content (parameter files) -
Format of the variables file for the content of this file). The file
contains the names of the available variables together with their
properties. Some of the properties serve the model to distinguish if
certain routines should be applied on the variable, for example only
monetary variables are up-rated. Others are mere information, for
example, there is a verbal description of each variable (Automatic
Label), and a special description for each country. Moreover, the
variable description file stores the acronyms of which the variable
names are composed.

Note that in addition to these standardised variables, there are
variables which are defined during the model run using the functions
DefVar and DefConst (see EUROMOD Basic Concepts - EUROMOD
terminology paragraph EUROMOD variables).

Administrating variables and acronyms in the
EUROMOD user interface
The EUROMOD user interface provides a tool, which allows
administrating the information stored in the variable description file.
To assess this tool press the button Variables in the ribbon
Administration Tools.
The left part of the tool's surface shows the list of all available
EUROMOD variables. For each variable there is a checkbox

clbr://internal.invalid/book/EM_FC_DefVar_DefConst

indicating whether the variable is monetary (checked) or not (not
checked) and a verbal description. This description is called
Automatic Label, indicating that it is automatically generated out of
the acronyms building the variable's name, thus the user cannot edit
it. Moreover, if a variable is selected, country specific descriptions
are listed below the list of variables. These descriptions are editable.
The right part of the tool's surface shows all available acronyms
organised in a tree in three levels. The first level exhibits the type as
described above (benefit, tax, income, ...). The second level
subdivides types into so called "levels". The levels mainly serve a
better overview.[1] Finally, the third level shows the acronyms
themselves together with a verbal description, which is used to
generate the Automatic Labels of the variables using the respective
acronym. If an acronym is categorical (e.g. gender has two
categories: male and female), selecting the acronym lists the
respective categories below the list of acronyms.
Note the possibilities of adapting the size of the window, and
therewith the lists, according to your requirements. In particular note
that the window is vertically tiled, i.e. if you move the mouse between
the upper (Variables, Acronyms) and lower lists (Descriptions,
Categories) a cursor appears, which allows to resize the upper and
lower window part.

[1] The level also plays a role in the naming rules of variables. For more information see
Working with EUROMOD - Administrating variables.

Administrating Variables
The following operations are performed with the variable
administration tool. To open this tool press the button Variables in
the ribbon Administration Tools (also see Working with EUROMOD -
Administration of EUROMOD variables paragraph Administrating
variables and acronyms in the EUROMOD user interface).

Adding variables
Click the button Add Variable in the ribbon Variables of the variable
administration tool. Alternatively use the key combination Alt-V. This
adds an empty row to the list of variables. At first instance the row is
added below the selected row. Note, however, that resorting the list
(manually or by an automatic update due to another change) moves
empty rows to the beginning (ascended sorting) or end (descended
sorting) of the list of variables.

Changing the name of a variable
The name of a variable is changed by simply editing the respective
cell.
If the name of an existing variable is edited, the acronyms currently
used by this variable are highlighted in the list of acronyms. This
indicates which acronyms can furthermore be used and which not. In
this context, note that only acronyms of the same or a higher level as
its precedent acronyms can be appended. See the Data
Requirement Document (DRD) for detailed information concerning
the generation of variable names.
Once editing is finished, the interface checks the validity of the new
name. Firstly, it checks whether the type and acronyms used exist.
Secondly, it checks whether the order of acronyms is correct. Finally,
it checks whether this name already exists. If any of the checks fails
a respective warning is issued, but it is still possible to accomplish
the change. The interface automatically updates the variable's

description (Automatic Label). For unknown types or acronyms
question marks are displayed.
Note that changing the name is only possible without warning, if the
variable was added during the current session of the administration
tool. For existing variables a message warns about possibly
renaming a variable used in country implementations.

Changing the monetary state of a variable
To change the state of a variable from non-monetary to monetary or
vice-versa, check respectively uncheck the box alongside the
variable name.

Changing the country specific descriptions of a variable
If a variable is selected, the Descriptions list (located below the
Variables list) shows country specific descriptions for this variable.
These descriptions can be changed by simply editing the respective
cells.

Deleting variables
Select the variable to delete and click the button Delete Variable in
the ribbon Variables of the variable administration tool. Alternatively
use the key combination Ctrl-Shift-V. A message is issued to warn
about possibly deleting a variable used in country implementations.
This warning is however not shown, if the variable was added in the
current session of the administration tool (and therefore cannot be
used yet).

Filtering variables
To obtain a better overview the variables listed can be reduced to
those having certain properties (monetary / non-monetary, taken
from data / generated by the model) and types (DEMOGRAPHIC,
LABOUT MARKET, ..., UNKNOWN). Moreover, variables can be
restricted to those having a country specific description (for a specific
country or for any country). Select the respective properties and/or

types and click the button Apply Filters to list the variables fulfilling
the criteria.
The buttons Select All Filters and Unselect All Filters serve the
easier selection of filters by generating an original state (all filters
selected or no filters selected) that then can be refined as required.

Sorting variables
By clicking the header of the Name column variables are sorted by
name. A second click changes the sorting direction (from ascending
to descending and vice versa). Variables can also be sorted by
Automatic Label, but the result will not differ much from sorting by
name.

Searching variables
The Search button at the top right of the ribbon Variables allows for
checking the existence of the variable as specified in the field above
the button. Note that it is possible to use the search patterns ? and *,
where ? stands for one arbitrary character and * for any number of
arbitrary characters. The search will select the first visible match of
the search pattern. If more than one occurrence is found or if the
only occurrence is hidden due to filtering, an info box appears
showing all the matches. Hidden matches will appear in dark grey
colour. Visible matches will appear in black colour (blue when
hovered) and clicking them will select the corresponding variable in
the variables table. Also note that a full variable description tooltip
appears if you hover the mouse over any of the matches.

Acronym Administration
The following operations are performed with the variable
administration tool. To open this tool press the button Variables in
the ribbon Administration Tools (also see Working with EUROMOD -
Administration of EUROMOD variables paragraph Administrating
variables and acronyms in the EUROMOD user interface).

Listing of acronyms
The variable administration tool lists in its right part all acronyms
available for generating variable names (see the Data Requirement
Document (DRD) for detailed information concerning the generation
of variable names). The acronyms are organised in a tree with three
steps. The first step exhibits the variable type, i.e.
DEOMOGRAPHIC, TAX, INCOME, etc. The second step subdivides
types into levels. The levels mainly help to better categorize the
acronyms.[1] Finally, the third step shows the acronyms themselves
together with a verbal description, which is used to generate the
Automatic Labels of the variables. If an acronym is categorical (e.g.
gender has two categories: male and female), selecting this acronym
in the Acronyms list displays the categories in the Categories list
(locate below the Acronyms list).

Adding types
Click the button Add Type in the ribbon Acronyms of the variable
administration tool. Alternatively use the key combination Alt-T. This
appends a new empty type row at the end of the Acronyms list.

Changing types
To change a type's Description (DEOMOGRAPHIC, TAX, INCOME,
etc.) or Acronym (D, T, Y, etc.) simply edit the respective cell. In the
case of changing the Acronym the interface checks if the Acronym is
already used by another type and, if so, issues a respective
message and prevents the change to avoid ambiguousness.

Moreover, the interface checks whether the Acronym is used in the
current listing of variables. If so, a warning is issued, which lists the
variables concerned. The user is still able to accomplish the change,
however the description (Automatic Label) of the variables will show
up question marks to indicate unknown acronyms.

Deleting types
Select the type to delete and click the button Delete Type in the
ribbon Acronyms of the variable administration tool. Alternatively use
the key combination Ctrl-Shift-T. The interface checks whether this
type is used in the current listing of variables. If so, a warning is
issued, which lists the variables concerned. The user is still able to
accomplish the removal, however the description (Automatic Label)
of the variables concerned will show up question marks to indicate
unknown acronyms.

Adding levels
Click the button Add Level in the ribbon Acronyms of the variable
administration tool. Alternatively use the key combination Alt-L. This
adds a new empty level row. Note that, other than for types and
acronyms, the order of levels is relevant, thus the interface does not
simply append the row, but uses the selected row as orientation: if
another level row or an acronym row is selected, the new row is
inserted below the respective level. If a type row is selected, the
level is inserted as the first level of this type.

Changing levels
To change a level's description, simply edit the respective cell. Note
that, other than types and acronyms, levels do not possess an
Acronym (thus the respective cell is not editable), reflecting that
levels are not directly used in generating the Automatic Label of
variables.[2]

Deleting levels

Select the level to delete and click the button Delete Level in the
ribbon Acronyms of the variable administration tool. Alternatively use
the key combination Ctrl-Shift-L. The interface checks whether
acronyms of this level are used in the current listing of variables. If
so, a warning is issued, which lists the variables concerned. The
user is still able to accomplish the removal, however the description
(Automatic Label) of the variables concerned will show up question
marks to indicate unknown acronyms.

Adding acronyms
Select the level, where to add the new acronym (or select another
acronym within the level) and click the button Add Acronym in the
ribbon Acronyms of the variable administration tool. Alternatively use
the key combination Alt-A. This appends a new empty acronym row
at the end of the level.

Changing acronyms
To change an acronym's Description (age, gender, etc.) or Acronym
(AG, GN, etc.) simply edit the respective cell. In the case of changing
the Acronym the interface checks if the acronym is already used
within this type or is incorrect, i.e. does not consist of two characters.
If so, a respective message is issued and the change is prevented to
avoid ambiguousness. Moreover, the interface checks whether an
acronym is used in the current listing of variables. If so, a warning is
issued, which lists the variables concerned. The user is still able to
accomplish the change, however the description (Automatic Label)
of the variables concerned will show up question marks to indicate
unknown acronyms.

Deleting acronyms
Select the acronym to delete and click the button Delete Acronym in
the ribbon Acronyms of the variable administration tool. Alternatively
use the key combination Ctrl-Shift-A. The interface checks whether
the acronym is used in the current listing of variables. If so, a
warning is issued, which lists the variables concerned. The user is

still able to accomplish the removal, however the description
(Automatic Label) of the variables will show up question marks to
indicate unknown acronyms.

Searching acronyms
The Search buttons at the top right of the ribbon Acronyms allow for
searching acronyms.

The button Acronyms searches for the acronym as specified in
the fields left of the buttons. This is also the default search if you
press Enter in the search text field. Select the acronym type
(DEOMOGRAPHIC, TAX, INCOME, etc.) in the upper field and
the searched acronym in the field below. Pressing the button
selects the matched acronym. Note that, if ALL ACRONYMS is
selected instead of a specific type, several matches may be
found, as acronyms need to be unique only within a type. If
more than one occurrence is found, an info box appears
showing all the matches. Matches will appear in black colour
(blue when hovered) and clicking them will select the
corresponding acronym in the acronym tree. Also note that a full
acronym description tooltip appears if you hover the mouse over
any of the matches.
The button Description searches for acronyms with a description
as specified in the fields left of the button. Select the acronym
type (DEOMOGRAPHIC, TAX, INCOME, etc.) in the upper field
and the searched description in the field below. Note that search
patterns ? and * can be used, where ? stands for one arbitrary
character and * for any number of arbitrary characters
(examples: *child*, *wom?n*). Pressing the button selects the
matched acronym. If more than one occurrence is found, an info
box appears showing all the matches. Matches will appear in
black colour (blue when hovered) and clicking them will select
the corresponding acronym in the acronym tree. Also note that a
full acronym description tooltip appears if you hover the mouse
over any of the matches.

[1] The level also plays a role in the naming rules of variables. For more information see
Working with EUROMOD - Administrating variables.

[2] They are used indirectly by determining the order of acronyms. For more information see
Working with EUROMOD - Administrating variables.

Saving variables and acronyms
In the variables administration tool's menu select the menu item
Save, alternatively type Ctrl-S. The interface checks for empty
variable rows as well as empty or incomplete acronym rows. If it
detects such rows a respective message is issued and the user is
asked for correction.
To open the variables administration tool press the button Variables
in the ribbon Administration Tools (also see Working with
EUROMOD - Administration of EUROMOD variables paragraph
Administrating variables and acronyms in the EUROMOD user
interface).

Importing variables
The following operations are performed with the variable
administration tool. To open this tool press the button Variables in
the ribbon Administration Tools (also see Working with EUROMOD -
Administration of EUROMOD variables paragraph Administrating
variables and acronyms in the EUROMOD user interface).
To import variables from an external variables definition file
(VarConfig.xml) select the item Import Variables from the variables
administration tool's menu. This firstly allows the selection of the
external variables definition file. Once the file is chosen, a dialog
shows the possible changes, i.e. differences between the user
interface's internal variables definition file and the external one. This
means, the dialog lists the variables and acronyms either existing
only in the internal respectively external variables definition file or
have different attributes in the two files.
Note that importing variables is only possible if no changes were
accomplished in the current session of the variables administration
tool, otherwise the menu item is disabled. In this case close and
open the tool again, saving the changes if required.
Also note that, to begin with, it is assumed that the user wants to
overtake all modifications from the external variables definition file.
Respective changes are suggested in the Action columns. This
behaviour can be changed by ticking/unticking the checkboxes in the
Perform columns. This is supported by three buttons, which aim to
make selecting more efficient.

Clicking the button Tick selected variables ticks the checkboxes
of all selected rows in the variables list. Selected rows are
characterised by blue background colour. Selecting a single row
is accomplished by clicking it. Selecting multiple rows is
accomplished by holding the Strg key and clicking the
respective rows. Selecting a range of rows is accomplished by

clicking the first row pressing and holding the Shift key and
selecting the last row.
Clicking the button Untick selected variables unticks the
checkboxes of all selected rows. See above for recognising and
choosing selected rows.
Clicking the button Add only unticks the checkboxes of all
variables and acronyms for which the Action column is set to
delete.

List of possible changes in variables
The left part of the dialog shows which variables are different in the
external and the internal variables definition file. There are following
types of differences:

A variable exists in the external variables definition file only: The
column Action suggests adding this variable.
A variable exists in the internal variables definition file only: The
column Action suggests deleting this variable.
The monetary status of a variable is different: The column
Action suggests changing the monetary status and the column
Info informs about the direction of the change, i.e. to overtake
the status defined in the external variables definition file.
One or more of the country specific descriptions of a variable
are different: The column Action suggests changing the variable
and the column Info tells that the difference is in different
descriptions. The concrete differences are displayed in the
Descriptions list below the Variables list.
Note that, one can either overtake all descriptions of this
variable from the external file (checkbox Perform ticked), or
keep all descriptions of the internal file (checkbox Perform not
ticked), partly overtaking is not foreseen.
Also note, that it is possible (though not recommended) to
import a variable definitions file that refers to a different set of

countries (e.g. a country was added in the external version,
which is not yet implemented in the internal version). In this
case the importing tool issues a warning, telling that it cannot
overtake country specific descriptions.

List of possible changes in acronyms
The right part of the dialog shows which acronyms are different in
the external and the internal variables definition file. There are
following types of differences:

A whole type of acronyms exists in the external variables
definition file only: The column Action suggests adding this type
(including all levels and acronyms contained).
A whole type of acronyms exists in the internal variables
definition file only: The column Action suggests deleting this
type (including all levels and acronyms contained).
The description of an acronym type is different (e.g. IN KIND
changed to BENEFIT IN KIND): The column Action suggests
changing the description and the column Info tells the new
description. Note that a change of the shortcut of an acronym
type (e.g. K for IN KIND) is treated as deleting the whole type
and adding a new type with the new shortcut, as in fact all
variable names using the acronyms of this type get invalid.
A whole level of acronyms exists in the external variables
definition file only: The column Action suggests adding this level
(including all acronyms contained). The tool tries to add the level
at the same position as in the external file, by searching for a
common predecessor level.
A whole level of acronyms exists in the internal variables
definition file only: The column Action suggests deleting this
level (including all acronyms contained).
An acronym exists in the external variables definition file only:
The column Action suggests adding this acronym.

An acronym exists in the internal variables definition file only:
The column Action suggests deleting this acronym.
The description of an acronym is different: The column Action
suggests changing the description and the column Info tells the
new description. Note that, similar to types, a change of the
acronym itself is treated as deleting the acronym and adding a
new acronym, as in fact all variable names using the acronym
get invalid.
One or more of the categories of an acronym are different: The
column Action suggests changing the acronym and the column
Info tells that the difference is in different categories. The
concrete differences are displayed in the Categories list below
the Acronyms list.
Note that, one can either overtake all categories of this acronym
from the external file (checkbox Perform ticked), or keep all
categories of the internal file (checkbox Perform not ticked),
partly overtaking is not foreseen.

Performing the import
To accomplish the import, tick the checkboxes in the Perform
columns as required, and press the button Import. For variables you
can tick or untick several Perform boxes at once by first selecting the
respective rows and then clicking the buttons Tick selected variables
respectively Untick selected variables.
Note that it is not possible to undo the import via the undo-
functionality. However, there is no automatic saving of the variables
definitions file. That means closing the variables administration tool
without saving can still restore the old state.

Cleaning variables
To find out which EUROMOD variables and acronyms are not used
and therefore could potentially be deleted select the item Clean
Variables from the variables administration tool's menu (to open the
variables administration tool press the button Variables in the ribbon
Administration Tools - also see Working with EUROMOD -
Administration of EUROMOD variables).
Note that cleaning variables is only possible, if no changes were
accomplished in the current session of the variables administration
tool, otherwise the menu item is disabled. In this case close and
open the tool again, saving the changes if required.
Loading not used variables and acronyms: Pressing the button
Load starts the search for unused variables and acronyms. As this
may take a view minutes a progress bar is displayed.
List of not used variables: The left part of the dialog shows the
variables not used in any country's implementation. Initially it is
assumed that all listed variables are to be removed. Uncheck any
variables which should not be deleted.
List of not used acronyms: The right part of the dialog shows the
acronyms not used in any variables' name. Note that acronyms used
in a variable foreseen for removal (i.e. checkbox ticked) may be
listed as unused, if no other variable uses this acronym. Again
initially it is assumed that all listed acronyms are to be removed.
Uncheck any acronyms which should not be deleted.
Performing the cleaning process: To accomplish the cleaning
press the button Clean. Note that it is not possible to undo the
cleaning via the undo-functionality. However, there is no automatic
saving of the variables definitions file. That means closing the
variables administration tool without saving can still restore the old
state.

Applications
The user interface provides access to a couple of external tools
implemented in MS-Excel. Currently available are a tool for
generating hypothetical EUROMOD input data and a tool using
EUROMOD's output for drawing budget constraint graphs. To access
the tools, select the ribbon Applications and press the respective
button.

Policy Effects tool
What is the Policy Effects tool?
The Policy Effects tool estimates the first-order effects of policies on
household incomes. The tool is meant to assist with model validation
(see EUROMOD Country Reports on the EUROMOD website) and
compares policies in place in two consecutive years, both in nominal
and real terms.

Where can I find this?
You can find the Policy Effects tool under the "Applications" toolbar
ribbon, inside the "Tools" group.

How does it work?
When you open the Policy Effects tool you are presented with an
input form, which allows you to specify the (start) period of interest,
countries, input datasets and indexation factors (alphas, see
Methodology below). By default, the tool is set to analyse policy
changes in the most recent policy year available in the model, using
the dataset offering the best match for the start of this period (see
EUROMOD Basic Concepts - Terminology).
The field Output path at the bottom of the form allows changing the
default output folder where the tool stores micro-level output for
relevant policy scenarios together with log files (standard
EUROMOD run logs and a tool-specific log). Note that the output
folder must exist, otherwise EUROMOD issues an error message,
and any existing files with the same names will be overwritten
without a warning.
To produce micro-output and summary results, click on the "Run &
Show Results" button.

Results

Once specified policy systems have been simulated and analysed,
you will be presented with the results form. This has a tab control (on
the bottom) with a separate tab for each country previously selected.
Each country tab page has one inner tab control (on the top), with a
separate tab for each selected indexation factor (alpha).
Each summary table shows the effect of policy changes in a given
period on mean equivalised household disposable income by
(standard) income component and income decile group, as a
percentage of mean equivalised household disposable income in the
starting year. The latter is also used to construct income decile
groups. Throughout, the modified OECD equivalence scale is used.
For example, a 3 percent change for public pensions in the third
decile group in country A, indicates that changes (increases) in
public pensions accounted for a 3 percent increase in average
equivalised household income. In the case of taxes and SIC, a
positive (negative) number implies that taxes/SIC have been
reduced (increased). The sum of effects by income component
(columns 2 to 8) equals the total (column 9).
You can copy-paste any selected cells from these tables, either by
pressing Ctrl+C or by right-clicking and selecting "Copy" from the
context menu. You can also export all the calculated statistics (all
tables for all countries) into a single Excel file, by clicking on the
"Export" button.

Methodology
The estimation of policy changes draws on the method suggested by
Bargain and Callan (2010, The Journal of Economic Inequality).
Consider a single household and denote its market income (and
other characteristics) with y and monetary values of tax-benefit
parameters as p. A function d(p,y) calculates household disposable
income on the basis of its market income and monetary parameters,
reflecting the structure of the tax-benefit system (e.g. tax rates,
benefit eligibility rules). In period t, household disposable income can
be denoted as dt(pt,yt).

The tool estimates the direct effect of policy changes on household
incomes in the period from t=1 to t=2. To isolate it from other
changes in the income distribution (e.g. changes in household
composition or market incomes), household disposable incomes
under the two policy systems are assessed holding household
characteristics and market incomes constant. Furthermore, to adjust
for changes in nominal income levels over time, the monetary
parameters of the tax-benefit system are adjusted with a factor alpha
which reflects benchmark indexation. Specifically, the tool estimates
the policy effect (for each household) as:

Note that this is a particular variation of decomposition chosen for
EUROMOD validation purposes. (The full decomposition framework
is described in BC2010.) Technically, instead of scaling monetary
policy parameters, the tool scales monetary input variables with the
factor alpha and monetary output variables with the factor 1/alpha:

This relies on the assumption that tax-benefit systems are linearly
homogenous, that is d(cp,cy)=cd(p,y). Input variable adjustments are
limited to market incomes, expenditures and assets (specifically: all
monetary variables which name starts with y* or x*, variable afc as
well as all variables included in ils_origy, while excluding variables
included in ils_ben). Output variable adjustments cover all monetary
variables.
Summary results in the table are shown as a percentage of (mean)
disposable incomes in the starting year, i.e. d1(p1,y1).

There are two pre-defined choices for benchmark indexation: (i)
factor alpha could be set to 1 in which case the effect of policy
changes is calculated simply in nominal terms, or (ii) CPI indexation
in which case the effect of policy changes is calculated in real terms.
For (ii), the adjustment factor is automatically derived on the basis of

Eurostat's Harmonized Index of Consumer Prices - this information
needs to be defined (as $HICP) along with other series of uprating
indices (in the index table).
Note that the tool cannot be used when uprating factors are not
defined in an index table (see Defining Uprating Factors).

EUROMOD PLUGINS
Plug-ins are software components that extend the functionality of
EUROMOD. While the core user interface concentrates on
supporting the implementation, adaptation and running of countries'
tax-benefit systems, plug-ins provide additional features like
producing basic summary statistics, performing microvalidation, or
generating hypothetical datasets. In the official release of v1.10 the
only publicly available plug-in is the "Summary Statistics", but many
more will be added in future releases to accommodate task-specific
needs.

Summary Statistics plug-in
What is the Summary Statistics plug-in?
The Summary Statistics plugin is an analysis tool that produces a
fixed set of statistics on income distribution based on (a) EUROMOD
output file(s).

Where can I find this?
You can find the Summary Statistics plugin under the "Applications"
toolbar ribbon, inside the "EUROMOD plugins" group.

How does it work?
When you run the Summary Statistics plugin you are presented with
an input form which allows you to specify a path to a base directory.
This should be the directory where your output files are stored. You
should then specify on which files you want to perform calculations
by adding/removing files. Once you have selected the files you want
to analyse, click on the "Calculate Statistics" button.
After the files have been read and analysed, you will be presented
with the results form. This has an outer tab control with one tab page
for each system/file you analysed. Each tab page has one inner tab
control, whose tab pages hold different tables with the summarized
statistics results. You can copy-paste any selected cells from these
tables, either by pressing Ctrl+C on your keyboard or by right-
clicking your mouse and selecting the "Copy" command from the
context menu. You can also export all the calculated statistics (all
tables of all systems/countries) into one single Excel file, by clicking
on the "Export" button.

Keyboard Shortcuts
As it happens with most software applications, EUROMOD also
understands a number of keyboard shortcuts that, once you get used
to, will help you increase your productivity. Following is a list of
keyboard shortcuts that are generally available, both in the Country
spine and in other forms (e.g. Uprating Indices).
Keyboard
Shortcut Usage

Ctrl + Z
Undo the latest action. EUROMOD can store up to 100 actions, after which, the oldest action is removed to make
space for the new action. There are also specific actions that reset the undo/redo functionality. These will issue a

warning before they are applied and the user can chose to abort them.

Ctrl + Y Redo the latest undone action.

Shift +
Arrows Starting from the current cell, it will select an area of cells that can be copied.

Ctrl + C,
Ctrl + Ins

Copy the selected items into the clipboard. This works for text within cells, but also for whole cells both in the spine
and helping forms. The user may select multiple cells / parameters / functions / policies, by holding the Shift button

and selecting the start & end location with the mouse.

Ctrl + X,
Shift +

Del

Cut the selected text or cells and copy them into the clipboard. Note that this does not work for parameters /
functions / policies. It only works for selected text within a cell and for tables within helping forms (such as

Uprating Indices). Multiple selection works as for Copy.

Ctrl + V,
Shift + Ins

Paste the copied items into the current position. Note that this will not create new rows in the spine. So if you need
to copy-paste several parameters of one function into another, please make sure that it already has the same number

of parameters and in the same order.

F1 Brings up the help. If the focus is on helping form, the help will try to automatically load the corresponding page.
For function-specific help, see at the end of the following table.

Following is a list of keyboard shortcuts that are specific to the
country spine.
Keyboard
Shortcut Usage

Ctrl + F This will bring up the "Search" form.

Ctrl + H This will bring up the "Search and Replace" form.

Ctrl + S Save the current state of the country you are working on.

Ctrl +
Right

arrow, "+"

Expand the current function or policy. Note that if you are on a parameter cell, pressing "+" will start editing the cell
and add the "+" character (Ctrl + Right arrow will do nothing in this case, as there is nothing to expand).

Ctrl + Left
arrow, "-"

Collapse the current function or policy. Note that if you are on a parameter cell, pressing "-" will start editing the
cell and add the "-" character. Pressing Ctrl + Left while on a parameter or an already collapsed function will move

the focus to the parent function/policy.

/ Collapse the current item and all sub-items. On a function works like "-", but on a policy it will collapse both the
policy and all functions within it.

* Expand the current item and all sub-items. On a function works like "+", but on a policy it will expand both the
policy and all functions within it.

Ctrl + Up Move the current parameter / function / policy up or down respectively. Note that moving parameters cannot move

arrow, Ctrl
+ Down
arrow

outside their parent function and similarly moving functions cannot be moved outside their parent policy. Also
works with moving an area selection. Another way to move parameters / functions / policies up & down is to click

& drag them with the mouse.

Alt + O
Hide all rows but the selected one. This will hide only rows of the selected level, so pressing it when the focus is on
a parameter will hide all other parameters of that function only. You can find more options to hide & unhide rows,

by right-clicking on the row numbers.

Alt + S Spread the value of the current cell on all other systems. The focus must be on a system column.

Ctrl + A Open the "Add Parameters" box in order to add more parameters into the current function. The focus must be on a
function or parameter.

F5 Brings up the help and automatically loads the "Description" help page for the focused function.

F6 Brings up the help and automatically loads the "Summary of parameters" help page for the focused function.

EUROMOD Functions

What are functions and how are they used
EUROMOD functions are building blocks that allow EUROMOD
modellers to implement a country’s tax-benefit system. Each policy
(tax/benefit) is described by one or more such functions. Modellers
specify how EUROMOD calculates the policy by setting the
parameters of the functions to appropriate values.

What are functions?
The example below illustrates how EUROMOD functions are used to
implement a simple child benefit of 100 Euro monthly, received by
families with at least one child aged younger than three. The benefit
is implemented by using two functions: one describing the eligibility
rule, i.e. there must be a child younger than three in the family, and
the other describing the calculation of the benefit, i.e. payment of
100 Euro monthly.
Example 1:

Policy SL_demo Comment

Elig on eligibility rule
elig_cond dag < 3 there must be

TAX_UNIT tu_sben_family_sl at least one child aged younger than three

ArithOp on benefit calculation
who_must_be_elig one

formula 100#m the benefit amounts to 100 € per month

output_var bch_s

TAX_UNIT tu_sben_family_sl

Each function consists of a header displaying the name of the
function. In the example the eligibility rule is implemented by a
function called Elig and the calculation of the benefit is implemented
by a function called ArithOp. Moreover, each function has a
"switch", defining whether the function is activated or not. In the
example both functions are switched on. The possibility of switching
off a function may, for example, be used if a reform scenario is
implemented, where there is no eligibility condition, as illustrated in
the next example. In this example this results in each family
receiving the benefit, irrespective of having a child aged younger
than three (or any other condition).
Example 2:

Policy SL_demo SL_reform Comment

Elig on off eligibility rule
elig_cond dag < 3 dag < 3 there must be

TAX_UNIT tu_sben_family_sl tu_sben_family_sl at least one child aged younger than three

ArithOp on on benefit calculation
who_must_be_elig one n/a

formula 100#m 50#m the benefit amounts to 100/50 € per month

output_var bch_s bch_s

TAX_UNIT tu_sben_family_sl tu_sben_family_sl

In addition to name and switch a function consists of parameters to
specify its behaviour. The leftmost column in the examples contains
the names of the parameters used, whereas the "SL_demo"
headed column contains the parameter values for the system
"SL_demo". In the second example there is another column for the
system "SL_reform", illustrating that parameter values can be
different for each system. In the example the amount of the benefit is
changed from 100 to 50 Euro in the reform scenario.
Each function offers a different set of parameters to specify its
behaviour. For example, the general purpose of the function Elig is to
implement conditions under which a benefit is received / a tax must
be paid. Therefore, it offers parameters that allow the specification of
such conditions. For the child benefit the parameter elig_cond is
used. This parameter takes "formulas" with a yes/no result as
values, in the example dag<3, i.e. the variable for age must be
smaller than three. The general purpose of the other function used,
ArithOp, is to implement arithmetical operations. Consequently, it
offers parameters to specify the operation. For the child benefit the
parameter formula is used to define a very simple operation - it is
just set to the amount of 100 respectively 50 (#m stands for
monthly).
Each function, which calculates some result, offers the parameter
output_var to define a variable, which takes this result. In the
example the parameter output_var of the function ArithOp is set to
the variable bch_s (b=benefit, ch=child, _s=simulated), i.e. this
variable takes the amount of the benefit, for families fulfilling the
eligibility condition. The parameter output_var is not used with the
function Elig in the example, thought the function calculates a result,
which is either one, if eligibility conditions are fulfilled, or zero, if not.
So where does the function write its result to? The simple answer is
that the function has a default output variable called sel_s
(s=system, el=eligibility, _s=simulated), which means that, if no other

output variable is indicated by using the parameter output_var, the
result is written to sel_s.
The next question that may be posed is: how does the function
ArithOp know that it should fill the variable bch_s with the benefit
amount only for those families fulfilling the eligibility condition
calculated by the function Elig? This is accomplished by the
parameter who_must_be_elig and explained in section EUROMOD
Functions - Interactions between functions.

Interactions between functions
Usually more than one function is used to calculate a benefit or tax.
That means that the functions interact in some way. One could
classify these interactions in four categories:

Condition: one function (usually Elig) evaluates a condition and
a subsequent function operates on the basis of the result of this
evaluation.
Input: one function calculates some result, which is used as an
input by a subsequent function.
Addition: one function calculates a part of a policy and a
subsequent function calculates another part of the policy and
therefore needs to add to the first part.
Replacement (actually not a real interaction): a subsequent
function replaces the result of a precedent function, which of
course only makes sense if the result of the first function is used
in between.

The following examples illustrate these different forms of interaction.
Example 1:

Policy SL_demo Comment

Elig on eligibility rule
elig_cond {dag < 3} there must be at least one child aged <3

TAX_UNIT tu_sben_family_sl

ArithOp on benefit calculation
who_must_be_elig one_member

formula 100#m the benefit amounts to 100 € per month

output_var bch_s

TAX_UNIT tu_sben_family_sl

In example 1 the second function, ArithOp, uses the result of the first
function, Elig, to determine whether the benefit is calculated for a
family or not, dependent on the value of the parameter
who_must_be_elig. What happens in detail is that the function Elig
sets the variable sel_s to one for all persons younger than three and

to zero for all older persons. The function ArithOp uses this
information together with the value of the parameter
who_must_be_elig. A value of one_member means that at least one
member of the family needs to be eligible, i.e. for at least one person
in the family the variable sel_s must be set to one. If this is the case
the benefit is calculated for the family, i.e. the variable bch_s set to
100, otherwise no calculation takes place, i.e. the variable bch_s
keeps its value of zero. (To be precise, in the concrete example any
possibly existing value of the variable would be overwritten by zero.
This is however an alterable behaviour.)
Example 2:

Policy SL_demo Comment

ArithOp on calculate lower limit
formula xcc * 0.1 lower limit is 10% of child care costs

output_var sin01_s write lower limit to intermediate variable

TAX_UNIT tu_individual_sl

ArithOp on benefit calculation
formula 100#m the benefit amounts to 100 € per month

lowlim sin01_s with a lower limit as calculated above

output_var bcc_s

TAX_UNIT tu_individual_sl

Example 2 shows a child care benefit, which amounts to 100 Euro
monthly, with a lower limit of 10% of child care costs. The first
function calculates the lower limit, i.e. 10% of the variable for child
care costs, xcc (x=expenditure, cc=child care), and writes it to the
intermediate variable sin01_s (s=system, in=intermediate,
_s=simulated). The second function uses the result of the first
function by setting the parameter lowlim to sin01_s, i.e. applying the
value of this variable as the lower limit of its own result, which is
written to the variable bcc_s (b=benefit, cc=child care,
_s=simulated).
Example 3:

Policy SL_demo Comment

ArithOp on calculate health insurance contributions
formula yem*0.05 calculate health contributions as 5% of employment income

output_var tscee_s write health contributions to output variable

TAX_UNIT tu_individual_sl

ArithOp on calculate unemployment insurance contributions

formula yem*0.03 calculate unemployment contributions as 3% of employment income

output_add_var tscee_s add unemployment contributions to output variable

TAX_UNIT tu_individual_sl/td>

Example 3 calculates employee social insurance contributions as the
sum of health contributions (5% of employment income yem) and
unemployment contributions (3% of employment income). The first
function calculates health contributions and writes its result to the
output variable tscee_s (t=tax, sc=social contribution, ee=employee,
_s=simulated). The second function calculates unemployment
contributions and adds its result to the output variable tscee_s.
Whether the result of a function overwrites the output variable or
adds to any previous value is determined by using either the
parameter output_var (output variable is overwritten) or
output_add_var (result is added to output variable).
Example 4:

Policy SL_demo Comment

ArithOp on calculate lower limit for child care benefit
formula xcc * 0.1 lower limit is 10% of child care costs

output_var sin01_s write lower limit to intermediate variable

TAX_UNIT tu_individual_sl

ArithOp on benefit calculation child care benefit
formula 100#m the benefit amounts to 100 € per month

lowlim sin01_s with a lower limit as calculated above

output_var bcc_s

TAX_UNIT tu_individual_sl

ArithOp on calculate lower limit education benefit
formula xed * 0.1 lower limit is 10% of education costs

output_var sin01_s write lower limit to intermediate variable

TAX_UNIT tu_individual_sl replacing previous value

ArithOp on benefit calculation education benefit
formula 100#m the benefit amounts to 100 € per month

lowlim sin01_s with a lower limit as calculated above

output_var bched_s

TAX_UNIT tu_individual_sl

Example 4 extends the child care benefit of Example 2 by an
(similarly designed) education benefit. For both benefits the
intermediate variable sin01_s is used for calculating the lower limit.

Once the childcare benefit is calculated, its lower limit is no longer
used and can be replaced by the lower limit of the education benefit.

Sorts of functions and brief description of
available functions
One could classify EUROMOD functions into three categories: policy
functions, system functions and special functions.

Policy functions
These functions are primarily designed for implementing policy
instruments (taxes and benefits). The category contains the following
functions:

Elig is referred to as eligibility function as it is most frequently
used for determining the eligibility for receiving benefits.
However, it also allows for determining the liability for paying
taxes, as well as evaluating other conditions.
BenCalc is referred to as the benefit calculator, as it allows for
modelling a wide range of policy instruments, in particular
benefits.
ArithOp is a simple calculator, allowing for the most common
arithmetical operations.
SchedCalc allows for the implementation of the most common
(tax) schedules.
Allocate allows for (re)allocating amounts (incomes, benefits,
taxes) between members of assessment units.
Min and Max are simple minimum and maximum calculators.

System functions
These functions are designed for implementing the "framework" of
the tax-benefit model. A country’s parameter file contains several
special policies to implement this framework. The section
EUROMOD Basic Concepts - Presentation of countries' tax-benefit-
systems provides more information about these special EUROMOD

policies and their purpose. Usually, the implementation of a special
policy uses just one or two particular system functions. The category
contains the following functions:

Uprate is used in the special policy Uprate_cc and allows for the
uprating of monetary dataset variables.
SetDefault allows for the setting of default values for not
existent dataset variables.
DefIL is mainly used in the special policy ILDef_cc and allows
for the definition of incomelists (see EUROMOD Basic Concepts
- EUROMOD terminology).
DefTU is mainly used in the special policy TUDef_cc and allows
for the definition of assessment units (see EUROMOD Basic
Concepts - EUROMOD terminology).
UpdateTU allows for the redefinition of assessment units.
DefOutput is used in the special policies output_xx_cc and
allows for the definition of model output (see EUROMOD Basic
Concepts - EUROMOD input and output).
DefVar and DefConst allow for the definition of intermediate
variables respectively constants, which can be used by other
(mostly policy) functions.

Special functions
These functions go beyond the implementation of the tax-benefit
system. The category contains the following functions:

Loop and UnitLoop allow for repeating part (or all) of the tax-
benefit calculations. As an example, for calculating marginal tax
rates at least part of the policies need to be calculated twice,
once for original income and once for marginally increased
income.
Store and Restore are mainly, though not exclusively, designed
to be used with the loop functions described above, as it is

frequently necessary to set some or all variables back to their
initial (or some other previous) value after each iteration.
ChangeParam allows for changing the value parameters. It also
can, for example, be used for more transparent implementation
of policy reforms, by avoiding direct changes of the base policy
parameters and putting the alterations in separate reform
policies instead.
Totals allows for the calculation of aggregates (i.e. sums,
means, etc.) of variables or incomelists over the whole
population (represented by the dataset) or a selected subgroup.
DropUnit and KeepUnit allow for dropping (keeping only)
individuals, families or households with special characteristics
from (within) the calculations.
ILVarOp allows for operations on the content, i.e. the variables
of an incomelist.
RandSeed sets the starting point for generating a series of
pseudorandom numbers.
CallProgramme allows for calling an external application.
DefInput allows for reading values for one or more EUROMOD
variables from a text file.

Common parameters and general features in
interpreting their values
All functions offer parameters to determine their behaviour. There
are several features with respect to parameters and interpreting their
values, which are shared by all or many functions. Moreover, there is
a set of common parameters, which are provided by all or most of
the policy functions and some of the system and special functions.
Moreover, parameters can be categorised into compulsory and
optional parameters. If a modeller tries to use a function without a
compulsory parameter EUROMOD issues an error message. If an
optional parameter is not indicated a default value is used. The
descriptions of the functions list the compulsory and optional
parameters and the default values of the latter.

Common Parameters
All or most of the policy functions and some of the system and
special functions provide common parameters. They can be
classified into four categories:

Common parameters affecting output
The parameter output_var allows for the indication of a variable for
storing the result of the function’s calculations. All policy functions
provide this parameter. In general the parameter is compulsory, i.e.
the modeller must explicitly name a variable that stores the function’s
result. There is just one exception: The function Elig has the variable
sel_s (s=system, el=elig, _s=simulated) as its default output variable.
System functions in general have no output_var parameter. Some
but not all of the special functions provide an output_var parameter
– the descriptions of the functions in section EUROMOD Functions -
Summary of functions and their parameters indicate whether this is
the case or not.
The parameter output_add_var has the same functionality as the
parameter output_var but, in contrast to output_var, where any
existing value of the output variable is overwritten, with
output_add_var the function result is added to any existing value of
the output variable. The parameter is not compulsory itself, but either
output_var or output_add_var must be indicated. The parameter is
provided by all functions, which provide the parameter output_var,
except for the function Elig (as it is not very meaningful to add to a
yes/no variable).
The parameter result_var allows the indication of a "second output
variable". In general this makes only sense in combination with the
parameter output_add_var. Example 1, which is an extension of
example 3 in section EUROMOD Functions - Interactions between
functions, demonstrates the use of this parameter.
Example 1:

Policy SL_demo Comment

ArithOp on calculate health insurance contributions

formula yem*0.05 calculate health contributions as 5% of employment income

result_var tsceehl_s write health contributions to variable for health sic

output_var tscee_s write health contributions to general sic variable

TAX_UNIT tu_individual_sl

ArithOp on calculate unemployment insurance contributions
formula yem*0.03 calculate unemployment contributions as 3% of employment income

result_var tsceeui_s write health contributions to variable for unemployment sic

output_add_var tscee_s add unemployment contributions to general sic variable

TAX_UNIT tu_individual_sl

The two functions in example 1 calculate employee social insurance
contributions by adding health and unemployment contributions into
the variable tscee_s (t=tax, sc=social contribution, ee=employee,
_s=simulated). While in example 3 of section EUROMOD Functions
- Interactions between functions the amount of the single
contributions was lost, in this example the parameter result_var is
used to indicate variables which store them: health contributions are
stored in the variable tsceehl_s (hl=health insurance) and
unemployment contributions are stored in the variable tsceeui_s
(ui=unemployment insurance). In general that means that the
variable indicated with the parameter result_var takes the function’s
result. Accordingly, any possible existing value of the variable is
always overwritten. This optional parameter is provided by all
functions, which provide the parameter output_var.

Common parameters affecting "eligibility"
Example 1 in section EUROMOD Functions - Interactions between
functions provides an explanation for the parameter
who_must_be_elig. This explanation however does not mention
which values (except from one) the parameter can take on. These
are:

one: one member of the assessment unit must be eligible
one_adult: one adult member of the assessment unit must be
eligible
all: all members of the assessment unit must be eligible

all_adults: all adult members of the assessment unit must be
eligible
nobody: calculations are carried out for each assessment unit,
regardless of the eligibility rule simulated by the Elig function.
This is the default if the parameter is not indicated and provides
the same result as setting it to n/a

"assessment unit" as well as the concrete meaning of "adult" refers
to the definition of the assessment unit indicated by the parameter
TAX_UNIT (which is described in more detail below). "eligible"
means that the variable sel_s is set to one for this person (usually by
using the function Elig). More precisely, it is not necessarily the
variable sel_s, which must be set to one, but the variable indicated
by the parameter elig_var. Example 2 illustrates the use of an
alternative eligibility variable. If the parameter elig_var is not
indicated the variable sel_s is used by the parameter
who_must_be_elig as a default.
The optional parameters who_must_be_elig and elig_var are
provided by all policy functions (even Elig). None of the system
functions provides them. For special functions the descriptions of the
respective functions in section EUROMOD Functions - Summary of
functions and their parameters indicate whether this is the case or
not.
Example 2:

Policy SL_demo Comment

Elig on eligibility rule
elig_cond dag > 80 person must be aged older than 80

output_var stm01_s write "eligibility" to a temporary variable

TAX_UNIT tu_individual_sl

ArithOp on benefit calculation

who_must_be_elig all if assessment unit is individual, parameter can be set to "all" or "one" with
the same result

elig_var stm01_s use same eligibility variable as above

formula 100#m the benefit amounts to 100 € per month

output_var sin01_s write result to some intermediate variable

TAX_UNIT tu_individual_sl

Common parameters limiting results
Three common parameters allow limiting the result of functions.
These are lowlim for setting a lower limit, uplim for setting an upper
limit and threshold to define a threshold. The limit parameters are
always optional. They are provided by all policy functions except Elig
and Allocate. None of the system functions provides them. The
descriptions of the functions in section EUROMOD Functions -
Summary of functions and their parameters indicate whether a
special function provides the parameters or not. The examples below
illustrate the usage of the limit parameters.
Example 3: Lower and upper limit

Policy SL_demo Comment

ArithOp on
formula stm01_s

lowlim 100#m

uplim 1000#m

output_var stm02_s

TAX_UNIT tu_individual_sl

In example 3 the output variable stm02_s (s=system, tm=temporary,
_s=simulated) is set to 100 in all cases where the (input) variable
stm01_s is smaller than 100 (lower limit applies). It is set to the value
of stm01_s in all cases where stm01_s is between 100 and 1000 (no
limit applies). And it is set to 1000 in all cases where stm01_s is
greater than 1000 (upper limit applies).
Example 4: Threshold

Policy SL_demo Comment

ArithOp on
formula stm01_s

threshold 100#m

output_var stm02_s

TAX_UNIT tu_individual_sl

In example 4 the output variable stm02_s is set to zero in all cases
where the (input) variable stm01_s is smaller than 100 (threshold
applies) and to the value of stm01_s in all other cases (threshold
does not apply).
Example 5: Threshold and lower limit

Policy SL_demo Comment

ArithOp on
formula stm01_s

threshold 100#m

lowlim 50#m

output_var stm02_s

TAX_UNIT tu_individual_sl

Example 5 shows the combined use of a threshold and a lower limit.
In this case the output variable is not set to zero if it is below the
threshold, but to the value of the lower limit. This means that
stm02_s is set to 50 in all cases where the (input) variable stm01_s
is smaller than 100 and to the value of stm01_s in all other cases.
For the sake of completeness another, very rarely used common
parameter, limpriority, should be mentioned. If there is a conflict
between upper and lower limit, i.e. the upper limit is below the lower
limit (which is nonsense if limits are defined by amounts, but may be
the case if they are defined by variables or incomelists) usually a
warning is issued. This can be avoided by using the parameter
limpriority. Possible values are upper, i.e. the upper limit dominates
in conflict cases, or lower i.e. the lower limit dominates. If the
parameter is not defined and the warning ignored, the upper limit
dominates.

The common parameter TAX_UNIT
The parameter TAX_UNIT allows for the definition of the assessment
unit a function refers to. Assessment units range from individual units
(each person builds her/his own unit) over various definitions of
family units to household units (all persons of the household belong
to the same unit). The possibility of defining the assessment unit not
only on policy level, but on function level, is one of the features that
makes EUROMOD especially flexible. In fact it is even possible to
change the assessment unit within a function. The other side of the
coin is however, that it takes some learning effort and experience to
understand the consequential complexity. The sections EUROMOD
Functions - Parameter values and the assessment unit and
EUROMOD Functions - The system functions DefTU and UpdateTU

deal with these complexities. The former explains how parameters
are interpreted if the assessment unit consists of more than one
person and to which person within the unit the function result is
assigned. The latter describes how an assessment unit is defined
and updated.
The parameter is compulsory for all policy functions, i.e. must be
indicated. System functions do not have a TAX_UNIT parameter,
except for the function DefOuput, where output is printed on the level
of the indicated assessment unit (see EUROMOD Functions - The
system function DefOutput). Whether a special function has a
TAX_UNIT parameter or not is indicated in the descriptions of the
functions in section EUROMOD Functions - Summary of functions
and their parameters.

Common parameters controlling whether a function is
processed
The switch is another feature of functions, which is not literally a
parameter. As the examples show, functions can be "switched off",
i.e. they are skipped by the model run. In fact the switch has four
possible states:

on: function is switched on
off: function is switched off
n/a: function is not applicable. With respect to treatment of the
function by the model run this state is equal to the off state.
However, it stresses that the function is not only switched off (for
whatever reason) but has no meaning for the respective system.
Moreover, the user interface uses the n/a state in its
export/import functionalities to assess whether a function is
relevant for a system (see Working with EUROMOD - Importing
and exporting systems).

Finally, the parameter run_cond allows for a conditional processing
of the function. That means the function is only carried out if the

respective condition is fulfilled. The functionality of the parameter
should not be confused with the task of the parameters affecting
"eligibility" described above. The latter specify conditions, which are
individual or household based and therewith determine whether a
function is processed for a specific unit. In contrast, the parameter
run_cond is a conditional switch. Consequently, differently from
eligibility conditions, run conditions are not intended to be used with
individual/household based operators.[1] Also note that, the output
variable of a function, which does not fulfil the run condition, stays
uninitialised (analogous to switched off functions). Typically the
parameter run_cond is used in more advanced applications of the
model, e.g. loops, where the condition refers to a specific processing
state (e.g. iteration of the loop) or some other global condition (e.g.
some total is reached/not reached). This optional parameter is
available for all policy functions as well as several system functions
(the function descriptions in section EUROMOD Functions -
Summary of functions and their parameters indicate for which).

[1]Note that the programme does issue a warning if individual/household specific operators
are used with run_cond. If this warning is ignored, the condition is fulfilled, if the assessment
unit fulfils the condition. Conditions which refer to a smaller unit are evaluated for the head
of unit (respectively the unit she/he belongs to). As a consequence, taking this and the fact
that the output variable stays uninitalised if the run condition is not fulfilled, run_cond could
in principle be used as a shortcut instead of elig. This is however considered as bad
practice and only recommended for testing purposes.

Types of parameter values
Apart from classifying parameters with respect to their functionality
(i.e. affecting output, limiting result, etc.) or into compulsory/optional,
there is another possible grouping. Parameters can be classified by
the values they take as follows:

Yes/no parameters
Such parameters allow only for two values: yes (or 1) and no (or 0).

Amount parameters
Amount parameters take either monetary or non-monetary amounts.
Example 1 shows the tax schedule of a simple income tax policy.
There are two bands: one for taxable income below 5,000 Euro
annually and one for income above this amount. For the first band a
tax of 10% of taxable income is due, for the second the rate is 25%.
The parameters band_uplim and band_rate are amount parameters,
where the former takes monetary amounts and the latter non-
monetary amounts.
Example 1:

Policy Grp/No SL_demo Comment

SchedCalc on tax schedule
base il_taxableY

band_upLim 1 5000#y for annual taxable income up to 5,000

band_rate 1 0.1 the tax amounts to 10% of taxable income

band_rate 2 0.25 and 25% for income above this amount

output_var tin_s

TAX_UNIT tu_individual_sl

Usually amount parameter values are followed by their "period", for
example the band limit of 5000 is followed by #y for yearly.
EUROMOD internally converts all amounts to monthly, e.g. the 5000
are divided by 12. It is good practise to always indicate a period,
though #m for monthly has no real effect, as no conversion to
monthly is necessary. It is however more transparent to explicitly
state whether amounts are annual, monthly or some other period. Of

course there are amounts where a period does not make sense, as
for example for the two rate parameters or capital values.
The period can take on the following values:

#m for monthly (no conversion)
#y for yearly (divided by 12, more precisely multiplied by
0.08333333333333)
#q for quarterly (divided by 3, more precisely multiplied by
0.3333333333333)
#w for weekly (multiplied by 4.34 =365/12/7)
#d for daily (multiplied by 30.5)
#l for labour day (multiplied by 21.73)
#s for labour day in a six days week (multiplied by 26.07)
#c for capital (no conversion)

Moreover each period can be used with r for rate, e.g. #mr for
monthly rate. Rules for conversion are the same.
Note that, despite of numbers, constants as defined by
func_DefConst can be used as amount parameter values.

Variable parameters
Variable parameters take EUROMOD variables as values (see
EUROMOD Basic Concepts - EUROMOD terminology). In most of
the examples we come across a very important variable parameter,
the parameter output_var. If variable parameters are used with an
assessment unit that comprises more than one person the question
arises how to interpret this. This issue is dealt with in section
EUROMOD Functions - Parameter values and the assessment unit.

Incomelist parameters
Incomelist parameters take EUROMOD incomelists as values.
Incomelists are important EUROMOD concepts. They are usually

defined in the special policy ILDef_cc of a country’s parameter file
(see EUROMOD Basic Concepts - Presentation of countries' tax-
benefit-systems). Section EUROMOD Functions - The system
function DefIL describes how to define an incomelist. Generally
speaking an incomelist is a variable, which is composed of other
variables, e.g. the incomelist il_earns may be the sum of the
variables yem (y=income, em=employment) and yse (se=self
employment). The name of an incomelist by convention starts with
il_ or ils_, where il_ is used for "normal" incomelists and ils_ for
system incomelists. The latter are incomelists, which exist in all
countries’ models and have a certain definition, for example ils_dispy
is the incomelist for disposable income as defined in EUROMOD. In
principle incomelists (once defined) are applied in the same way as
variables, therefore there is roughly any parameter which takes only
incomelists but not variables.

Variable-incomelist parameters
A few parameters take as well variables as incomelists as values. As
an example, the parameter Share_Prop of the function Allocate
features this type.

Name parameters
Such parameters allow for indicating names, e.g. the name of a file,
incomelist, etc. As an example, the parameter File of the function
DefOutput is a name parameter, taking the name of the output file.

Query parameters
EUROMOD offers the so-called "queries" which allow for more
complex questions, as for example how many children are in the
assessment unit. These queries are listed and described in the
section EUROMOD Functions - Queries. The result of a query is
either yes or no, e.g. for the query IsLoneParent, or some (monetary
or non monetary) value, e.g. for the queries GetPartnerIncome
respectively nDepChildrenInTu. Actually, there are no "pure" query

parameters, i.e. parameters that only take queries as their values,
rather queries are usually used within formulas and conditions.

Formula parameters
Formula parameters are in fact little calculators. Example 2 shows a
somewhat more complex application, by calculating a benefit for
persons in education, amounting to 500 Euro monthly, supplemented
by half of the expenditure on education. Any other education benefit
is deducted from the resulting amount, where a lower limit ensures
that no negative benefit results. For determining whether a person is
in education the formula applies a query (IsInEducation), the basic
benefit is indicated as monetary amount (500#m), the supplement for
expenditure on education is calculated by using a variable (xed) and
dividing it by a non monetary amount (2). Finally, an incomelist is
used to determine other education benefits (il_OthEducBen).
Example 2:

Policy SL_demo Comment

ArithOp on
formula IsInEducation * (500#m + xed / 2) – il_OthEducBen

lowlim 0

output_var stm01_s

TAX_UNIT tu_individual_sl

In general formula parameters take amounts (monetary and non
monetary), variables, incomelists and queries as operands and
combine them by simple arithmetic operations to calculate some
result. Consequently, formula parameters can be used as amount,
variable, incomelist and query parameters (by using just one
operand of the respective type and no arithmetic operations). In fact,
there are no pure query parameters and very few pure amount and
incomelist parameters. Section EUROMOD Functions - The policy
function ArithOp provides a more detailed description of the formula
parameter.

Condition parameters
Similar to formula parameters condition parameters take amounts,
variables, incomelists and queries as operands. However, they

combine them by logical and comparison operators to evaluate a
condition with a yes/no result. Example 3 shows a somewhat more
complex application, which tests whether there is at least one
dependent child in the family and if so, whether earnings are below
15,000 Euro annually or unemployment benefits are received. A
more detailed description of condition parameters is provided in the
section EUROMOD Functions - The policy function Elig.
Example 3:

Policy SL_demo Comment

Elig on
elig_cond nDepChildrenInTu>1 & (il_earns<15000#y | bun>0)

TAX_UNIT tu_sben_family_sl

Taxunit parameters
A few parameters take assessment units as their values, the most
important is the parameter TAX_UNIT, which is described in more
detail in section EUROMOD Functions - Common Parameters. The
name of assessment units by convention starts with tu_.

Categorical parameters
Some parameters take a limited number of defined values, as for
example the parameter who_must_be_elig, taking the values
one_member / one_adult / all / all_adults (also see section
EUROMOD Functions - Common Parameters).

Footnote parameters
Finally, there are parameters that serve the further specification of
other parameters. They can be easily identified by names starting
with the character #, e.g. #_amount. The application of such
parameters is described in detail in section EUROMOD Functions -
Footnote parameters for the further specification of operands.

Parameter values and the assessment unit
Assessing the result of a function
If parameters taking variables, incomelists and queries as their
values are used with assessment units, which comprise more than
one person, there is an issue of interpretation. Example 1 illustrates
the problem. The assessment unit of the function is the whole
household. So what does IsDisabled mean? Is the condition fulfilled
if there is one disabled person in the household, or must all
household members be disabled, or a special person? The next
question is, to whose earnings does the incomelist il_earns refer? To
all earnings within the household? To the earnings of the disabled
person? Similar questions could be posed with respect to the
housing costs variable xhc.
Example 1:

Policy SL_demo Comment

ArithOp on
formula IsDisabled * xhc – il_earns

lowlim 0

output_var bho_s

TAX_UNIT tu_household_sl

To answer these questions lets first state the general rules.

Level of Interpretation ... used in
condition parameters

... used in
other parameters

monetary variables
and incomelists ... assessment unit assessment unit

non-monetary variables and
individual level queries ... individual head of assessment unit

non-individual level queries ... consult description in section
EUROMOD Functions - Queries

consult description in section
EUROMOD Functions - Queries

For the clear interpretation of these rules some further information is
necessary:

"assessment unit" refers to the assessment unit defined by the
parameter TAX_UNIT of the function and means that values are
added up over all members of the unit.

Who is the head of the assessment unit is determined on the
basis of the respective definition via the function DefTU. (See
section EUROMOD Functions - The system functions DefTU
and UpdateTU for information with respect to defining an
assessment unit.)
Special care needs to be taken if monetary variables and
incomelists are used in any of the condition parameters of the
function DefTU (e.g. DepChildCond). The rule that they are
interpreted on assessment unit level is still valid. However, as
the model is operating on a not yet finally defined assessment
unit, it is not clear what this means, if the assessment unit is of
type SUBGROUP.[1] Therefore, it is good practise in such
cases to always explicitly define the level of assessment by
using a level parameter (see section EUROMOD Functions -
Footnote parameters for the further specification of operands).
Whether a variable is monetary or non-monetary is defined in
the variable description file (see section Administration of
EUROMOD variables). Note that simulated temporary (stmxx_s)
and intermediate (sinxx_s) variables are defined to be monetary.
It is possible to change the assessment unit generally used by
the function (i.e. indicated by parameter TAX_UNIT) for single
variables, incomelists or queries. As examples for the
application of this feature consider a personal level benefit,
where a means test refers to family income or a family based
benefit, covering only parents’ income. A detailed description of
this feature is provided in section EUROMOD Functions -
Footnote parameters for the further specification of operands.

Before answering the questions raised above, let's exercise by
interpreting some more simple and stylised examples, based on a
simple sample household.
idperson yem dag dms ils_origy is head?

101 2000 40 2 2000 yes

102 1500 38 2 1800 no

103 0 7 0 0 no

Let's interpret some formula parameters of the function ArithOp (i.e.
"other" parameters with respect to the table of rules above)
assuming that the assessment unit (parameter TAX_UNIT) is the
whole household.

formula result interpretation
yem*2 (2000+1500+0)*2=7000 yem is a monetary variable therefore added up over all members of the assessment unit

ils_origy/2 (2000+1800+0)/2=1900 ils_origy is an incomelist therefore added up over all members of the assessment unit

dag 40 dag (i.e. age) is a non-monetary variable therefore taken from the head of the assessment
unit

IsMarried 1 (i.e. yes) IsMarried is an individual level query therefore interpreted for the head of the
assessment unit (dms=2 means married)

Now let's interpret some elig_cond parameters of the function Elig
(i.e. condition parameters with respect to the table of rules above)
again assuming that the assessment unit is the whole household. As
condition parameters produce a result on individual level, we need a
second function and parameter to obtain a result on assessment unit
level – in the example the parameter who_must_be_elig (wmbe).

elig_cond individual result
assessment unit result

interpretation
wmbe=one wmbe=all

yem<1700

101 (2000+1500+0)<1700=0
(0 or 0 or

0)=0
(0 and 0
and 0)=0

yem is a monetary variable therefore added up over all
members of the assessment unit102 (2000+1500+0)<1700=0

103 (2000+1500+0)<1700=0

ils_origy>3000

101 (2000+1800+0)>3000=1
(1 or 1 or

1)=1
(1 and 1
and 1)=1

ils_origy is an incomelist therefore added up over all
members of the assessment unit102 (2000+1800+0)>3000=1

103 (2000+1800+0)>3000=1

dag<30

101 40<30=0
(0 or 0 or

1)=1
(0 and 0
and 1)=0

dag (i.e. age) is a non-monetary variable therefore
interpreted on individual level102 38<30=0

103 7<30=1

IsMarried

101 (dms=2)=1
(1 or 1 or

0)=1
(1 and 1
and 0)=0

IsMarried is an individual level query therefore
interpreted on individual level (dms=2 means married)102 (dms=2)=1

103 (dms=2)=0

After these exercises we are fit to answer the questions raised
above. IsDisabled is an individual level query, i.e. it asks whether the
head of the household (which is the assessment unit of the function)
is disabled. The housing costs variable xhc is monetary, i.e. it is
interpreted on household level. The incomelist il_earns is interpreted
on household level as well. Summarising, the benefit funds the

household’s expenditure for housing, if the head of the household is
disabled. Any earnings, received by anyone in the household, are
deducted.

Storing the result of a function
So far we have clarified how the result of a function is evaluated, but
it is still not clear where this result is stored. Taking example 1 it is
clear that it should be stored in the variable bho_s (b=benefit,
ho=housing, _s=simulated). But in the variable bho_s of which of the
household members? The following rules answer this question and
clarify what happens with the function result in general.

The result of a function is assigned to the head of the
assessment unit. That means:

If parameter output_var is used the variable defined by
parameter output_var is set to (overwritten by) the function
result.
If parameter output_add_var is used the function result is
added to the variable defined by parameter output_add_var.
Any variable defined by parameter result_var is set to
(overwritten by) the function result.

For all other members of the assessment unit the following
applies:

If parameter output_var is used the variable defined by
parameter output_var is set to zero.
If parameter output_add_var is used the variable defined by
parameter output_var is not changed (i.e. keeps its value).[2]
Any variable defined by parameter result_var is set to zero.

For all members of not eligible assessment units (with respect
to the settings of parameter who_must_be_elig) the same rules

concerning output and result variable apply as for non-head
members of eligible assessment units.
The following stylised example may illustrate the rules, assuming the
result to store is 1000 and the assessment unit of the function is the
household.

idperson is head? is eligible unit previous value of
output variable

value of output variable if
value of result

variable
parameter
output_var

is used

parameter
output_add_var

is used

101 yes
yes

undefined 1000 1000 1000

102 no undefined 0 0 0

201 yes
yes

1500 1000 2500 1000

202 no 1500 0 1500 0

301 yes
no

undefined 0 0 0

302 no undefined 0 0 0

401 yes
no

1500 0 1500 0

402 no 1500 0 1500 0

The rules apply for all policy functions with two exceptions. The
function Allocate (see section EUROMOD Functions - The policy
function Allocate) is designed to reallocate the value of variables, i.e.
allows for assigning results to someone else than the head. As a
consequence it must be an exception of the rule. Also the function
Elig shows a different behaviour, which is explained in detail in
section EUROMOD Functions - The policy function Elig.

[1] For DepChildCond the default assessment unit is the whole household, but for any other
condition a rather arbitrary subgroup is used.

[2] Except when the variable was "undefined" before – in which case it is set to zero (a
defined value). Note that EUROMOD initialises all simulated variables by a value called
VOID, which amounts to 0.0000000000001, to mark them as undefined.

Footnote parameters for the further
specification of operands
The operands of formula parameters and condition parameters may
be "further specified" by using so called footnotes and respective
footnote parameters. Explanations and examples below illustrate
what this means and introduce another bunch of common
parameters, as footnote parameters are applicable with several
functions (more specific, with all functions providing formula and/or
condition parameters).

Further specification of operands by footnotes: limits
Besides showing how to apply limits not only on the function result
(as by parameters lowlim, uplim and threshold) but also on single
operands, example 1 illustrates the usage of footnotes.
Example 1:

Policy Grp/No SL_demo Comment

func_ArithOp on

formula yem#1 * 0.1 + yse#2 *
0.15

10% of employment and 15% of self-employment
income

#_uplim 1 20000#y upper limit for employment income

#_uplim 2 30000#y upper limit for self-employment income

output_var sin01_s

TAX_UNIT tu_individual_sl

The example calculates 10% of employment income (yem) and 15%
of self-employment income (yse) as the function's result, where an
upper limit of 20,000 Euro annually is set for employment income
and an upper limit of 30,000 Euro annually for self-employment
income. The #1 and #2 in the formula indicate, that the operands
yem and yse are to be further specified, while the parameters
#_uplim, Grp/No 1 and #_uplim, Grp/No 2 conduct this further
specification, in this case by defining the mentioned limits.
Note that footnotes can apply any integer number, e.g. using #4711
and #_uplim, Grp/No 4711 instead of #1 and #_uplim, Grp/No 1
would be possible as well. Also note that, footnotes can be used

more than once: if the upper limit for employment income and self-
employment income were the same, one could write the formula as
yem#1*0.1+yse#1*0.15 and omit the parameter #_uplim, Grp/No 2.

Further specification of operands by footnotes: amounts
If there is more than one system it is sometimes more transparent to
indicate amounts outside the formula. Example 2 illustrates the
issue.
Example 2:

Policy Grp/No SL_demo SL_reform Comment

func_ArithOp on on

formula amount#1 +
yem*amount#2

amount#1 +
yem*amount#2 function results to

#_amount 1 10000#y 15000#y a basic amount

#_amount 2 0.1 0.15 plus x% of empl.
income

output_var sin01_s sin01_s

TAX_UNIT tu_individual_sl tu_individual_sl

It would as well be possible to write the formulas as 10000#y +
yem*0.1 for the system SL_demo and 15000#y + yem*0.15 for
SL_reform, but with this approach the differences between the base
and the reform system would be less transparent. Apparently, this
matter becomes especially significant, with a rather complex formula
and the implementation of several policy years. Therefore, good
modelling practise suggests to thoroughly considering, whether to
pack amounts, which tend to change with the policy year within the
formula or outside.

Further specification of operands by footnotes:
assessment units
Section EUROMOD Functions - Parameter values and the
assessment unit discussed the interpretation of operands (variables,
incomelists and queries) if they are used with assessment units,
which comprise more than one person, and announced the
possibility of changing the function's assessment unit (indicated by

parameter TAX_UNIT) for single operands. Example 3 now
illustrates this possibility.
Example 3:

Policy Grp/No SL_demo Comment

func_ArithOp on
formula IsInEducation * xed – ils_dispy#1 / 3 individual level education benefit

#_level 1 tu_sben_family_sl financing expenditure on education

lowlim with means test on family level

output_var bun_s

TAX_UNIT tu_individual_sl

func_ArithOp off
formula IsInEducation#1 * xed#1 – ils_dispy / 3

#_level 1 tu_individual_sl does not work !!!

lowlim 0

output_var bun_s

TAX_UNIT tu_sben_family_sl

Both functions in example 3 seem to calculate a benefit, which
finances people's expenditure on education (xed). The assessment
unit of the first function is individual. That means, if the footnote was
ignored, all education expenditure of a person in education going
beyond a third of her/his personal disposable income (ils_dispy)
would be financed. With the footnote #1 applied on the operand
ils_dispy and the specifying parameter #_level, Grp/No 1 defining
tu_sben_family_sl as the relevant assessment unit, the means test is
extended to family's disposable income, i.e. only education
expenditure going beyond a third of the family's disposable income is
financed. Note, that the level of education expenditure is not
changed, i.e. the benefit still concerns the person's education
expenditure.
The second function looks like doing the same thing the other way
round, but that's not quite true. In fact it would lead to the following
warning – therefore it is switched off: "Assessment unit cannot be
used as alternative level. (Only assessment units containing the
function's main assessment unit are allowed ...); Handling:
Alternative level is ignored". The main assessment unit of the
function is tu_sben_family_sl, i.e. some definition of the family. Thus
the warning says that only assessment units containing the family

are allowed, and obviously an individual’s family is not part of the
individual (but the other way round). But why is this problematic?
The answer is that the programme would not know which individual
in the family and therefore prefers to ignore the level change over
possibly causing confusion by doing something arbitrary. That
means level changes are only possible to bigger (comprising) units
(in the example e.g. the whole household) but not to smaller (sub)
units.

Further specification of operands by footnotes:
specification of queries
A few queries need or allow for further specification. For example for
the query GetPartnerIncome a specification of "income" is
necessary. Example 4 illustrates how such specifications are
established.
Example 4:

Policy Grp/No SL_demo Comment

func_ArithOp on
formula nDepChildrenInTaxunit#1 count the number of dependent children

#_AgeMin 1 10 aged 10 to 16

#_AgeMax 2 16

output_var stm01_s

TAX_UNIT tu_sben_family_sl

The example calculates the number of dependent children aged
between 10 and 16 in the family. nDepChildrenInTaxunit is a query
that counts the dependent children in the assessment unit. It has two
optional parameters, #_AgeMin and #_AgeMax, which are set to 10
respectively 16 in the example. To find out which queries require or
allow for further specification see section EUROMOD Functions -
Queries.

Identifiers and the placeholders =cc= and
=sys=
Placeholders
EUROMOD add-ons are commonly designed for being used with not
just one country, but with several or all countries. (For more
information on add-ons see EUROMOD Functions - EUROMOD
add-ons and the special functions AddOn_Applic, AddOn_Pol,
AddOn_Func and AddOnPar.) In implementing them it is sometimes
necessary to refer to components of the tax-benefit implementations,
which are in principle common, but have country- or system-
dependent specifications. As a typical example, all countries have
some definition of the assessment unit household, but specifications
(e.g. who is a child) differ, therefore the respective assessment units
are called tu_household_ee, tu_household_dk, etc. To be still able to
refer to them all at once the placeholder =cc= can be used, e.g.
tu_household_=cc=. The model will replace the placeholders by the
respective country acronym at runtime. As another typical example
an add-on may produce a special output. In order to not overwrite
this output if the add-on is run for several systems, one may want to
use someoutput_=sys= as filename (parameter File of function
DefOutput). Again the model will replace the placeholder by the
respective system name at runtime, e.g. someoutput_DK_2012. In
principle the placeholders not only can be used with add-ons but in
each parameter file (though probably seldom necessary).

Identifiers
Each EUROMOD policy, function and parameter possesses a unique
identifier in the form of a GUID[1]. More precisely, identifiers are
system specific, which means that each policy, function or parameter
possesses one unique identifier per system. These unique identifiers
are assigned once a component is created and kept for the whole
lifetime of the component.

In addition each policy, function and parameter possesses a
"symbolic identifier". The symbolic identifier of policies is simply their
name. The symbolic identifier of a function is composed of the name
of the policy where the function is located and the order of the
function, separated by _#. For example tin_es_#3 refers to the third
function in the Spanish income tax policy (tin_es). The symbolic
identifier of a parameter is composed of the name of the policy
where the parameter is located, the order of the function containing
the parameter and the order of the parameter itself, the former order
again separated by _# and the latter by a point. For example
tin_es_#3.7 refers to the seventh parameter in the third function of
the Spanish income tax policy.
Symbolic identifiers are constructed somewhat different for the
functions DefIL and DefTU. Instead of the order of the function the
incomelist’s or taxunit’s name is used. For example
ildef_bg_#ils_dispy refers to the function defining disposable income
for Bulgaria (more precisely the DefIL function in the policy ildef_bg
with parameter name set to ils_dispy). Similarily
tudef_bg_#tu_household_bg.3 refers to the third parameter in the
function defining the Bulgarian household concept
(tu_household_bg). This sort of referencing allows an add-on for
example to add components to incomelists which exist for all
countries, e.g. a benefit or tax calculated by the add on can be made
part of standard disposable income.
Due to their construction symbolic identifiers are not system specific
and, though unique at a certain time, may change with alterations of
the order of functions or parameters or the renaming of a policy. The
reason for still preferring them over the more secure unique
identifiers is similar to the usage of placeholders, i.e. they are not
supposed to refer to something unique but to several countries or
systems.
Identifiers are used by several functions, most frequently by the
AddOn_xxx functions, but also by the loop functions and
ChangeParam. For an example see EUROMOD Functions -
EUROMOD add-ons and the special functions AddOn_Applic,

AddOn_Pol, AddOn_Func and AddOnPar. Please note that
symbolic identifiers can only be used within add-ons! For within
country implementations only the use of unique identifiers are
allowed.
To use an identifier right click the respective policy, function or
parameter and select either Copy Identifier or Copy Symbolic
Identifier from the context menu. This copies the respective identifier
to the clipboard, from where it can be pasted to the required location.
If the user prefers the "manual" way to create identifiers, this
summary of syntax may help:
General: PolicyName[_#FunctionNumber][.ParameterNumber]
(examples: tin_es, tin_es_#3, tin_es_#3.7)
DefIL: PolicyName_#IncomelistName[.ParameterNumber]
(examples: ildef_bg_#ils_dispy, ildef_bg_#ils_dispy.6)
DefTU: PolicyName_#TaxunitName[.ParameterNumber] (examples:
tudef_bg_#tu_household_bg, tudef_bg_#tu_household_bg.3)

[1] GUID stands for Globally Unique IDentifier, which is a unique reference number used as
an identifier in computer software. The value of a GUID is represented as a 32-character
hexadecimal string.

Description of functions and their
parameters
This section provides a descriptive explanation of EUROMOD
functions with many examples. For a full description of the functions'
parameters see EUROMOD Functions - Summary of functions and
their parameters.

The policy function ArithOp
Basically, ArithOp offers the functionality of a simple calculator. It
provides, apart from the common parameters, just one parameter,
formula, containing the formula to be calculated to derive the
function's result. For details on the formula syntax, please look at the
formula/condition syntax.

The policy function Elig
The function Elig is often referred to as eligibility function, because it
is most frequently used for determining the eligibility for receiving a
certain benefit. More general, its purpose is to implement conditions.
Usually such conditions evaluate whether a certain assessment unit
is eligible for receiving a benefit / liable for paying a tax. The basic
use of Elig is discussed in sections EUROMOD Functions -
Interactions between functions and EUROMOD Functions - Common
Parameters. Briefly recapitulated, the function sets a variable
(usually sel_s) to zero or one, based on a condition defined by the
parameter elig_cond. Subsequent functions use this information,
together with the setting of the parameter who_must_be_elig, to
determine whether their calculations should be carried out for a
certain assessment unit or not.

Interpreting conditions with respect to the assessment
unit
As briefly denoted in section EUROMOD Functions - Parameter
values and the assessment unit, the function Elig shows a somewhat
different behaviour in determining parameter values with respect to
the assessment unit and in setting the output variable.

Firstly, the output variable (usually sel_s) is individually set
for each person in the assessment unit (instead of the head
of the unit as for other functions).
The output variable is set to 1 if (a) a person fulfils all
personal conditions and (b) the assessment unit the person
belongs to fulfils the assessment unit conditions, as
defined by parameter elig_cond.

Example 1 may help to understand these rules.
Example 1:

Policy SL_demo Comment

Elig on
elig_cond nDepChildrenInTaxunit>2 & dag<10 & ils_dispy<20000#y

TAX_UNIT tu_sben_family_sl

ArithOp on
who_must_be_elig one

formula 100#m

output_var bfa_s

TAX_UNIT tu_sben_family_sl

The benefit of monthly 100 Euro is received by families with more
than two dependent children, where at least one is younger than ten
and family’s disposable income is below 20,000 Euro annually. Let’s
figure out why. elig_cond consists of three conditions:
nDepChildrenInTaxunit>2 clearly can be assessed on assessment
unit level only. ils_dispy<20000#y is also an assessment unit level
condition, because we know from section EUROMOD Functions -
Parameter values and the assessment unit that incomelists, if not
defined elsewise, are assessed for the assessment unit. dag<10, on
the contrary, is clearly an individual level condition. With respect to
the rules outlined above, the output variable of Elig, i.e. sel_s, is set
to one for all children aged less than 10 years, living in familys with
more than two dependent children and disposable income below
20,000 Euro annually. Those children fulfil the individual level
condition of being younger than ten and their family fulfils the two
assessment unit level conditions. As the parameter
who_must_be_elig states that at least one member of the
assessment unit must be eligible, all families containing such a child
receive the benefit.
The example (hopefully) illustrated why the function Elig needs to be
an exception with respect to setting its output variable. In general, it
could be stated that flexibility with respect to the assessment unit is
especially useful for evaluating (eligibility) conditions. Therefore the
possibility of changing the assessment unit for single operands is
much more likely to be used with condition parameters than with
formula parameters. Example 2 exemplifies such a use of an

alternative assessment unit, by changing the means test of example
1.
Example 2:

Policy Grp/No SL_demo Comment

Elig on
elig_cond nDepChildrenInTaxunit>2 & dag<10 & ils_dispy#1<20000#y

#_level 1 household_sl

TAX_UNIT tu_sben_family_sl

ArithOp on
who_must_be_elig one

formula 100#m

output_var bfa_s

TAX_UNIT tu_sben_family_sl

The means test now refers to whole household’s disposable income
instead of the disposable income of the family.

[1] Please note, that the not-operator ! only works on single conditions, e.g. !(IsDisabled &
IsUnemployed), is incorrect syntax.

The policy function BenCalc
The function BenCalc is often referred to as the benefit calculator, as
it allows for modelling a wide range of policy instruments, in
particular benefits. This is accomplished by combining the
functionalities of the functions Elig and ArithOp. Basically, the
function calculates its result as a sum of "components", where the
value of a component is only added if a certain condition is fulfilled
by at least one member of the assessment unit. The following
stylised formulas illustrates the approach:
result = Sumi (compi_perTU if compi_cond = true)

result = Sumi (compi_perElig * nElig if compi_cond = true)

That means, a component is only added if the component's condition
is fulfilled, which is defined by the parameter compi_cond. This
parameter follows the same rules as the parameter elig_cond of the
function Elig. The value of the component is either defined by the
parameter compi_perTU or compi_perElig, which follow the same
rules as the parameter formula of the function ArithOp. In the former
case simply the value as defined by compi_perTU is added, whereas
in the latter case the value as defined by compi_perElig multiplied by
the number of assessment unit members fulfilling the condition is
added. Example 1 illustrates the approach by modelling a simple
child benefit, where each family with dependent children
nDepChildrenInTaxunit>0 receives a monthly amount of 100 Euro
(comp_perTU, GrpNo 1) plus monthly 10 Euro (comp2_perElig,
GrpNo 2) for any child younger than three dag<3.
Example 1:

Policy Grp/No SL_demo Comment

BenCalc on
comp_cond 1 nDepChildrenInTaxunit>0

comp_perTU 1 100#m benefit pays a fixed amount if there are children

comp_cond 2 dag<3

comp_perElig 2 10#m plus an amount per child younger than 3

output_var bch_s

TAX_UNIT tu_sben_family_sl

Example 2 presents a frequent application of the function BenCalc –
a child benefit where the amount depends on the number of children.
Example 2:

Policy Grp/No SL_demo Comment

BenCalc on
base 50#m

comp_cond 1 isNtoMchild#1

#_N 1 1

#_M 1 2

comp_perElig 1 $base 50 for the 1st and 2nd child

comp_cond 2 isNtoMchild#2

#_N 2 3

#_M 2 4

comp_perElig 2 $base*1.5 75 for the 3rd and 4th child

comp_cond 3 isNtoMchild#3

#_N 3 5

#_M 3 99

comp_perElig 3 $base*2 100 for each child beyond the 4th

output_var bch_s

TAX_UNIT tu_sben_family_sl

The function result is calculated as the sum of three components.
The condition for component one, comp_cond, Grp/No 1, is fulfilled if
a person "is the Nth to Mth child", where N is defined by the
parameter #_N, Grp/No 1 and M is defined by the parameter #_M,
Grp/No 1, i.e. the person must be the 1st to 2nd child to fulfil the
condition. comp_perElig, Grp/No 1 is set to $base a basic benefit
amount of monthly 50 Euro, defined by the parameter base. That
means 50 Euro monthly are paid for each potential first and second
child. In the same way component two defines that 75 Euro monthly
(50*1.5) are paid for the third and fourth chid and component three
adds 100 Euro monthly (50*2) for each fifth and any further child.
Example 3 uses BenCalc to model a child benefit where the amount
depends on the age of the children.
Example 3:

Policy Grp/No SL_demo Comment

BenCalc on
base 50#m

comp_cond 1 IsDepChild & dag<=3

comp_perElig 1 $base*2 100 for children younger than 3

comp_cond 2 IsDepChild & dag>=4 & dag<=14

comp_perElig 2 $base 50 for children from 4 to 14

comp_cond 3 IsDepChild & dag>=15 & dag<=20

comp_perElig 3 $base*1.5 75 for children from 15 to 20

output_var bch_s

TAX_UNIT tu_sben_family_sl

The function result is calculated as the sum of three components.
The condition for component one, comp_cond, GrpNo 1, is fulfilled
by children who are up to three years old. The amount paid per child
fulfilling the condition is defined by parameter comp_perElig, GrpNo
1 and set to $base*2, i.e. 100 Euro monthly (50*2). In the same way
an amount of 50 Euro monthly is paid for each child aged four to 14
years and an amount of 75 Euro monthly (50*1.5) for each child
aged 15 to 20 years.
Example 4 shows a further typical application of the function
BenCalc.
Example 4:

Policy Grp/No SL_demo Comment

BenCalc on
base 100#m

comp_cond 1 IsHeadofTU

comp_perElig 1 $base 100 for the head

comp_cond 2 IsPartnerOfHeadofTU

comp_perElig 2 $base*0.5 50 for the partner of the head

comp_cond 3 IsDepChild

comp_perElig 3 $base*0.3 30 per dependent child

comp_cond 4 IsDepParent

comp_perElig 4 $base*0.3 30 per dependent (grand)parent

output_var bfa_s

TAX_UNIT tu_big_family_sl

Each assessment unit receives a monthly base amount of 100 Euro
via component 1 – the condition is being the head of the assessment
unit and obviously each assessment unit has exactly one.
Component 2 adds 50 Euro ($base*0.5) for the partner of the head.
Another 30 Euro per dependent child are added by component 3.
And finally, component 4 adds further 30 for each dependent
(grand)parent.

BenCalc provides parameters allowing for the withdrawal of a benefit
when income rises. Example 5 illustrates how they work.
Example 5:

Policy Grp/No SL_demo Comment

BenCalc on
comp_cond 1 IsLoneParent

comp_perElig 1 100#m 100 for lone parents with no employment income

withdraw_base yem

withdraw_rate 0.1 10 cents are withdrawn for each Euro earned

output_var bchlp_s

TAX_UNIT tu_individual_sl

In this simple example lone parents with no employment income
receive a monthly benefit of 100 Euro. Any employment income
leads to a withdrawal of the benefit. However, the benefit is not
withdrawn at a one to one rate, i.e. for each earned Euro one Euro of
benefit is lost, but at a one to one tenth rate, i.e. for each earned
Euro only 10 Cents of benefit are lost. The benefit is zero only at a
monthly employment income of 1,000 Euro or above. The formula is:
benefit (sum of components) minus withdraw_base times
withdraw_rate. It is not necessary to define a lower limit of zero for
the benefit (using parameter lowlim) to avoid negative results for
employment income above 1,000, as the lower limit of the function
result is automatically set to zero if the withdraw parameters are
used.
There are two other parameters allowing for an alternative approach
to withdraw a benefit with rising income. They are presented in
example 6.
Example 6:

Policy Grp/No SL_demo Comment

BenCalc on
comp_cond 1 IsLoneParent

comp_perElig 1 100#m 100 for lone parents with no employment income

withdraw_base yem

withdraw_start 500#m 20 cents for each Euro earned beyond 500

withdraw_end 1000#m but only if income is below 1000

output_var bchlp_s

TAX_UNIT tu_individual_sl

Still lone parents receive a monthly benefit of 100 Euro, which is
totally withdrawn at an employment income of 1,000 Euro monthly
(withdraw_end). However, the withdrawal only starts at an income of
monthly 500 Euro (withdraw_start), up to these earnings the full 100
Euro are received. To provide a "smooth" decrease of the benefit,
the withdrawal must be faster as in example 5, as it starts later. The
implicit withdrawal rate is therefore one to one fifth, i.e. 20 Cent for
each earned Euro beyond 500. The possibility of calculating an
implicit withdrawal rate suggests that parameters withdraw_rate and
withdraw_end are exchangeable – that's true. Precisely the formula
outlined above must be stated as:
tapered result = result (sum of components) – max (withdraw_base –
withdraw_start, 0) * withdraw_rate
If withdraw_end is indicated withdraw_rate is calculated as:
withdraw_rate = result (sum of components) / (withdraw_end –
withdraw_start)

The policy function SchedCalc
The function SchedCalc is a schedule calculator. Its basic
functionality is demonstrated in example 1.
Example 1:

Policy Grp/No SL_demo Comment

SchedCalc on
base il_taxableY

band_upLim 1 5000#y

band_rate 1 0 income below 5,000 is exempted

band_upLim 2 50000#y income between 5,000 and 50,000

band_rate 2 0.25 is taxed with a 25% rate

band_rate 3 0.5 income above 50,000 is taxed with a 50% rate

output_var tin_s

TAX_UNIT tu_individual_sl

In the example the income defined by the incomelist il_taxableY is
divided into three bands, where the income band from annually 0 to
5,000 Euro (band_upLim, Grp/No 1) is taxed with a rate of 0%
(band_rate, Grp/No 1), the income band from 5,000 to 50,000 Euro
(band_upLim, GrpNo 2) with a rate of 25% (band2_rate, GrpNo 2)
and all income above 50,000 Euro per year with a rate of 50%
(band_rate, GrpNo 3). An income of 60,000 Euro per year would for
example lead to a tax of annually 16,250 Euro (5,000*0%+(50,000-
5,000)*25%+(60,000-50,000)*50%) and an income of 25,000 to a tax
of 5,000 (5,000*0%+(25,000-5,000)*25%). You may have noticed
that there is no explicit definition of the lower limit of the first band.
This is not necessary, because it is by default zero. To change this
default the parameter band_lowLim, Grp/No 1 can be used. There is
also no explicit definition of the upper limit of the third band, as by
default the upper limit of the last band is infinite (actually
999,999,999.99). In fact the same schedule could be constructed by
skipping the 0% band. Example 2 demonstrates how.
Example 2:

Policy Grp/No SL_demo Comment

SchedCalc on
base il_taxableY

band_lowLim 1 5000#y income below 5,000 is exempted

band_rate 1 0.25 income between 5,000 and 50,000

band_lowLim 2 50000#y is taxed with a 25% rate

band_rate 2 0.5 income above 50,000 is taxed with a 50% rate

output_var tin_s

TAX_UNIT tu_individual_sl

From a technical point of view it is possible to combine lower and
upper band limits, but if so this should be done with care, usually it is
confusing.
Example 3 shows another option to use the function SchedCalc.
Instead of applying rates on the bands, fixed amounts are used.
Example 3:

Policy Grp/No SL_demo Comment

SchedCalc on
base il_taxableY

band_lowLim 1 5000#y income below 5,000 is exempted

band_amount 1 500#y income between 5,000 and 50,000

band_lowLim 2 50000#y is taxed by a fixed amount of 500

band_amount 2 1000#y income above 50,000 is taxed by a fixed amount of 1,000

output_var tin_s

TAX_UNIT tu_individual_sl

For the income band from 5,000 (band_lowLim, Grp/No 1) to 50,000
(band_lowLim, GrpNo 2) an amount of 500 (band_amount, Grp/No
1) is due and for all income above 50,000 an amount of 1,000
(band_amount, GrpNo 2) is added. An income of 60,000 would for
example lead to a tax of 1,500 and an income of 25,000 to a tax of
500. Obviously it is not possible to define as well a rate as an
amount for a single band. However, technically it is possible to mix
rates and amounts for different bands (e.g. define a rate for band
one and an amount for band two). Yet as it seems rather unlikely that
this is necessary, the programme issues a warning in such cases,
assuming that this was done by mistake.
The optional parameter quotient is relevant for joint taxation: for
couples the income of both partners is added and (in the simplest
case) divided by two, then the schedule is applied, to afterwards
multiply the resulting tax by two. With progressive tax-schedules this
procedure is of advantage for couples where one partner has low (or

no) and the other high income, as the average income falls into
lower tax bands. Example 4 demonstrates a simple joint taxation
schedule.
Example 4:

Policy Grp/No SL_demo Comment

SchedCalc on
base il_taxableY

band_lowLim 1 5000#y income below 5,000 is exempted

band_rate 1 0.25 income between 5,000 and 50,000

band_lowLim 2 50000#y is taxed with a 25% rate

band_rate 2 0.5 income above 50,000 is taxed with a 50% rate

quotient 2 couple's income is divided by 2, resulting tax is multiplied by 2

output_var tin_s

TAX_UNIT tu_couple_sl

If the income of 60,000 is earned by a couple where one partner
earns 50,000 and the other 10,000 the resulting tax is 12,500
(50,000 + 10,000 = 60,000; 60,000 / 2 = 30,000; (30,000 – 5,000) *
25% = 6,250; 6,250 * 2 = 12,500) when a quotient of 2 is applied,
compared to 16,250 in example 1 (note that the parameter
TAX_UNIT is set to couple_sl in example4).
For the sake of completeness, example 5 illustrates how to use the
optional and rarely used parameter simple_prog. If this parameter is
used, the same rate/amount is applied on all income. The respective
rate/amount is the one of the highest band the income falls into.
Example 5:

Policy Grp/No SL_demo Comment

SchedCalc on
base il_taxableY

band_lowLim 1 5000#y persons with income below 5,000 are exempted

band_rate 1 0.25 persons with income between 5,000 and 50,000

band_lowLim 2 50000#y are taxed at a rate of 25% on the whole income

band_rate 2 0.5 persons with income above 50,000

simple_prog yes are taxed at a rate of 50% on the whole income

output_var tin_s

TAX_UNIT tu_individual_sl

To use again the two examples with an income of 60,000
respectively 25,000: in the 60,000 case the tax amounts to 30,000

(60,000 * 50%), because the highest band reached with this income
is band two with a rate of 50%. Accordingly, in the 25,000 case the
tax is 6,250 (25,000 * 25%).
SchedCalc provides two further optional parameters. The first,
baseThreshold, is a threshold for the base income. If the base
income is below this threshold the result(ing tax) is set to zero. The
second, roundBase, allows rounding the base income. By setting the
parameter to 1 the base income is rounded to whole numbers (e.g.
123.123 to 123 and 789.789 to 790). By setting it to 1,000 the base
income is rounded to whole thousands (e.g. 123,123.123 to 123,000
and 789,789.789 to 790,000). By setting it to 0.1 the base income is
rounded to have one decimal place (e.g. 123.123 to 123.1 and
789.789 to 789.8).

The policy function Allocate
As outlined in section EUROMOD Functions - Parameter values and
the assessment unit, the result of a function is in first instance
assigned to the head of the assessment unit. This behaviour may
sometimes be unwanted. As an example assume a family benefit,
which is in reality assigned to the mother. More often than not the
father earns more than the mother and therefore, in the model, he is
the head of the assessment unit to whom the benefit is assigned
initially. The function Allocate allows "correcting" this assignment by
providing possibilities to reallocate amounts between members of
assessment units. Example 1 shows the simplest application of the
function.
Example 1:

Policy SL_demo Comment

Allocate on
share bfa_s

output_var bfa_s

TAX_UNIT tu_sben_family_sl

In the example the variable bfa_s (b=benefit, fa=family, s=simulated)
indicated by the parameter share is reallocated. The function
Allocate accomplishes this by firstly building the sum of the variable
over all members of the assessment unit, to afterwards “share” this
sum between assessment unit members with respect to the rules
defined by the respective parameter settings. In the example no
special rules are defined, therefore the default applies, which is
sharing between all members of the assessment unit.
To make the example more realistic example 2 extends example 1
by the parameter share_between, which is set to !{IsDepChild}. That
means that sharing now involves only adult members of the
assessment unit, i.e. children do not get a share (where being a
child/adult is determined by the assessment unit’s child definition). In
most cases this would mean, that a family benefit, which was
assigned in first instance to the father is shared between both
parents.

Example 2:
Policy SL_demo Comment

Allocate on
share bfa_s

share_between !{IsDepChild}

output_var bfa_s

TAX_UNIT tu_sben_family_sl

Example 3 illustrates a more complex reallocation. Tax credits as
defined by incomelist il_taxcredits (parameter share) are shared
between members of the assessment unit in proportion to their
taxable income as defined by incomelist il_taxableY (parameter
share_prop). The result is written to the variable tintc_s (t=tax,
in=income, tc=tax credit) as defined by parameter output_var. The
parameter share_equ_ifzero handles the case that no member of the
assessment unit has any taxable income. If the parameter is set to
yes equal sharing takes place, if it is set to no or omitted an error
message is issued for assessment units without taxable income.
Note that no error message is issued if there is nothing to share, i.e.
if there are no tax credits for any member of the assessment unit.
Example 3:

Policy SL_demo Comment

Allocate on
share il_taxcredits

share_prop il_taxableY

share_equ_ifzero yes

output_var tintc_s

TAX_UNIT sben_family_sl

Example 4 illustrates that rather complex reallocations are possible if
the full capacity of the parmeter share_between is utilised.
share_between is a condition parameter, i.e. follows the same syntax
as the parameter elig_cond of function elig. The parameter
share_all_ifnoelig handles the case that no assessment unit member
fulfils the conditions set in parameter share_between. If set to yes or
omitted sharing takes place among all members of the assessment
unit, if set to no the output variable is set to zero. Note, that special
care must be taken to avoid “vanishing” benefits or taxes if share

and output_var refer to the same variable and share_all_ifnoelig is
set to no.
Example 4:

Policy SL_demo Comment

Allocate on
share sin01_s

share_between {dgn=0} & !{IsDepChild} & {IsInEductaion}

share_all_ifnoelig no

output_var sin02_s

TAX_UNIT household_sl

Finally note, that Allocate always operates on all members of the
assessment unit. That means that the parameter who_must_be_elig
is not applicable.

The phase-out function Allocate_F210
Allocate underwent several changes which also changed the default
behaviour of the function. As the former version is still used in some
countries' parameter files, a phase-out function Allocate_F210 was
introduced, which temporarily maintains the old behaviour.
Allocate_F210 will be removed as soon as there are no applications
left in any parameter files. Meanwhile a warning is issued with
respect to its phase-out nature.
There are the following differences between Allocate and
Allocate_F210:

With Allocate_F210, if the amount to be shared is defined by a
variable, it is not compulsory to indicate an output variable (by
parameters output_var or output_add_var). If no output variable
is defined the variable to share is also the variable where the
function result is written to.
Allocate_F210 provides a parameter adults_only. If set to yes
reallocation involves only adult members of the assessment
unit. Note that the default setting of the parameter is yes.
With Allocate_F210 an error message is issued if the parameter
share_all_ifnoelig is set to no and there are no “eligible” persons

with respect to the condition defined by share_between. The
default setting of the parameter is no.[1]

Hint: The default behaviour of Allocate_F210 almost can be obtained
by Allocate with the following parameter settings: output_var set to
the same variable as share; share_between set to !{IsDepChild};
share_all_ifnoelig set to no. There is still an important difference: if
there are no adults in the assessment unit, Allocate sets the output
variable to zero while Allocate_F210 shares between all members of
the assessment unit, i.e. including children.

[1] If there are no "eligible" persons with respect to share_between and share_all_ifnoelig is
set to yes as well as adults only sharing takes place among all adults. If there are no adults,
the head gets all.

The policy functions Min and Max
The functions Min and Max calculate the maximum respectively the
minimum of a number of values. In (the not very realistic) example
below the minimum of employment income (yem), "some income"
(defined by the incomelist il_someinc) and a monthly amount of 100
is calculated.
Example1:

Policy SL_demo Comment

Min on
val yem

val il_someinc

val 100#m

output_var stm01_s

TAX_UNIT individual_sl

Please note, that formula parameters provide the operators MIN(2)
and MAX(2), which may allow a more efficient implementation of
minima and maxima. e.g. min(10, 15), max(3,8), etc.

The system function Uprate
The function Uprate is usually used in the special policy Uprate_cc
(though it could in principle be used in any policy). It allows for the
uprating of monetary dataset variables to the price level of a policy
year. Example 1 shows a typical application of Uprate.
Example 1:

Policy SL_2007 SL_2008 SL_2009 Comment

Uprate off on on
dataset n/a sl_2008_a1 sl_2008_a1

def_factor n/a 1.02 1.03 default uprating factor

yem n/a 1.015 1.025 employment income

yse n/a 1.025 1.045 self-employment income

Uprate off on on
dataset n/a n/a sl_2009_a1

def_factor n/a n/a 1.01 default uprating factor

yem n/a n/a 1.05 employment income

yse n/a n/a 1.15 self-employment income

In the example the dataset sl_2008_a1 (with monetary values
referring to the year 2007) does not need any uprating if used with
the 2007 system, therefore the first function is switched off for this
system. For the other two systems an explicit uprating factor for
employment income (yem) and self-employment income (yse) is
defined. Employment income is uprated by 1.5% for the policy year
2008 and by 2.5% for 2009, self-employment income is uprated by
2.5% for 2008 and by 4.5% for 2009. All other monetary variables in
the dataset are uprated by 2% if used with the system SL_2008 and
by 3% if used with the system SL_2009. This is accomplished by the
parameter def_factor, which refers to all monetary variables for
which no explicit factor is defined. The dataset sl_2009_a1 (with
monetary values referring to the year 2008) is not intended to be
used with the system SL_2007 and does not need any uprating if
used with the system SL_2008, therefore the second function is
switched off for these two system. For the system SL_2009 again an
explicit uprating factor for employment income, 5%, and self-
employment income, 15%, is defined. All other monetary variables in

the dataset are uprated by 1% (def_factor). Finally, there is no
uprating function for the dataset sl_2010_a1, as it cannot be used
with the systems SL_2007 and SL_2008, and no uprating is
necessary for the system SL_2009.
The function Uprate provides two parameters intended to enhance
transparency, which are presented in Example 2.
Example 2:

Policy Grp/No SL_demo Comment

Uprate on
name uprate_sl_demo_v2

def_factor 1.025 default uprating factor

factor_name 1 cpi define consumer price index as named factor cpi

factor_value 1 1.02

yem cpi apply named factor cpi on employment income

yse cpi apply named factor cpi on self-employment income

The parameters factor_name and factor_value allow for the definition
of a "named" factor. In the example the consumer price index is
labelled as cpi by parameter factor_name, Grp/No 1, set to 1.02 by
parameter factor_value, Grp/No 1, and applied on employment
income (yem) and self-employment income (yse).
Another couple of parameters of the function Uprate allow for
"conditional uprating", this is illustrated by example 3.
Example 3:

Policy Grp/No SL_demo Comment

Uprate on
dataset sl_demo_a1

def_factor 1.025 default uprating factor

yem 1 1.02 employment income …

Factor_Condition 1 drgn1=1 … in region 1

yem 2 1.025

Factor_Condition 2 drgn1=2 … in region 2

yem 3 1.03

Factor_Condition 3 drgn1=3 … in region 3

In the example employment income (yem) is uprated by three
different factors, dependent on region. For the region number one,
defined by setting the parameter Factor_Condition; Grp/No 1 to
drgn1=1 (d=demographic, rg=region, n1=nuts level 1), a factor of

1.02 is defined. Analogously, employment income in region number
two is uprated by 2.5% (Factor_Condition, Grp/No 2 set to drgn1=2
and yem, Grp/No 2 set to 1.025) and in region number three by 3%
(Factor_Condition, Grp/No 3 set to drgn1=3 and yem, Grp/No 3 set
to 1.03).
Another, not unlikely use of conditions in the uprate function may
however be problematic and therefore exemplified here. Assume,
that the variable for old age pension (poa) is uprated dependent on
its level, i.e. if it amounts up to 1,000 the uprating factor is 1.01,
while if it is higher the factor is 1.02. Now assume a person with
original poa=1,000. Thus the first condition applies and poa is
uprated to 1,010. Consequently the second condition applies too, as
poa now exceeds 1,000, with a resulting poa of 1,030.2.[1] This is
most likely not what was intended, instead one would assume that
the conditions refer to the original value of poa. However, the
programme has no "intuitive knowledge" about the content of the
condition and does not take care about such self-references.[2] For
the example presented here, a solution may be to use
func_SchedCalc for uprating instead. Another possibility is to
generate a copy of the original poa to be used in the conditions.
Furthermore, some further parameters of the function Uprate allow
for consistent uprating of “aggregate variables”, i.e. variables that are
composed of other variables. This is illustrated in example 4.
Example 4:

Policy Grp/No SL_demo Comment

Uprate on
dataset sl_demo_a1

def_factor 1.025 default uprating factor

yempj 1.03 employment income in permanent job

yemtj 1.02 employment income in temporary job

aggvar_name 1 yem employment income is composed of …

aggvar_part 1 yempj … income in permanent job

aggvar_part 1 yemtj … income in temporary job

aggvar_tolerance 1 aggvar_tolerance

In the example employment income (yem) is composed of
employment income in permanent jobs (yempj) and employment

income in temporary jobs (yemtj). To make sure for consistent
uprating it is not advisable to define a separate uprating factor for the
aggregate variable and its components (e.g. 1.025 for yem, 1.03 for
yempj and 1.02 for yemtj), as this most likely results in
yempj+yemtj≠yem. The approach in the example tells the model that
an aggregate variable (parameter aggvar_name, Grp/No 1 set to
yem) is composed of particular other variables (parameter
aggvar_part, Grp/No 1 set to yempj and yemtj). The model than
"uprates" the aggregate variable by simply building the sum of the
already uprated components. Note, that for this reason it is
necessary to define the uprating factors of the component variables
before defining the composition of the aggregate variable. In
principle it is possible that a component variable is itself an
aggregate variable (e.g. yempj = yempjag + yempjbs, where ag
stands for agriculture and for bs business). In such cases the placing
of uprating factors and definitions of compositions should be done
with great care. Example 4 shows another parameter,
aggvar_tolerance. This parameter allows for imprecise sums. The
model checks for each aggregate variable whether it is, before
uprating, actually the sum of its components, with a default tolerance
of -0.01 to +0.01. The parameter allows for changing this tolerance,
in the example it is even tightened.
Finally, there is an option to uprate a whole group of variables at
once. This is illustrated in example 5.
Example 5:

Policy Grp/No SL_demo Comment

Uprate on
dataset sl_demo_a1

def_factor 1.025 default uprating factor

RegExp_Def 1 yem* uprate all employment variables …

RegExp_Factor 1 cpi … with cpi

RegExp_Def 2 x1* uprate expenditure variables of the first COICOP group …

RegExp_Factor 2 cpi … with cpi

RegExp_Def 3 x[2-9]* uprate all other expenditure variables …

RegExp_Factor 3 1.3 … with 1.3

In the example, all employment variables are uprated with the cpi
rate, while expenditure variables are uprated according to their
COICOP group. This is feature is very useful if you have an unknown
or very large number of variables that you need to uprate
simultaneously, as it allows the user to define the variables to be
uprated using a regular expression. Note however that this feature
cannot be combined with any of the other advanced features such as
aggvar or conditions.

[1] For completeness and to fully understand this, it should also be clarified, that the
function works cumulatively if more than one condition applies. That means if condition X
with the factor x applies as well as condition Y with the factor y, the resulting factor is x*y.

[2] To be precise, it does not take care about any references between variables uprated in
the same function.

The system function SetDefault
The function SetDefault allows for the setting of default values for not
existent dataset variables, as illustrated by the following example,
where the dataset hypo_data is used with the default values defined
by SetDefault.
Example 1:

Policy SL_demo Comment

SetDefault on
dataset hypo_data name of dataset

yiy 0 income : investment

yot 0 income : other

yempj yem income : permanent job

The usage of default values has the effect that the model does not,
as usual, issue an error message if a (used) variable does not exist
in the dataset, but first looks whether a default is defined for this
variable. In the example, if the variables yiy, yot or yempj do not exist
in the dataset, the model assumes yiy and yot to be zero for each
person, while yempj is set to the value of the variable yem (of course
yem must exist in the dataset).
Note that there is another way to avoid error messages for variables
not existent in data. If the option use_CommonDefault of the dataset-
system combination is set (see Working with EUROMOD -
Configuring datasets), all not existent variables are set to zero. The
model still considers and prefers any default value set by the
function SetDefault.
Summarising, this gives the following behaviour:

Action if variable does not exist
function SetDefault

defines no default value defines a default value

use_CommonDefault
no issue error message set this value

yes set to zero, no error message set this value

The system function DefIL
The function DefIL allows for defining incomelists (see EUROMOD
Basic Concepts - EUROMOD terminology). In principle the function
can be applied in any policy. For reasons of transparency incomelists
are however usually defined centrally in the special policy ILDef_cc.
This rule may be disregarded if a particular incomelist is just used
temporarily in one special policy. Anyway, an incomelist, once
defined, is available for all subsequent functions and policies. The
examples below illustrate different possibilities to define incomelists.
Example 1:

Policy SL_demo Comment

DefIL on taxable income
name il_taxableY

yem + employment income

yse + plus self-employment income

tscee_s - minus employee insurance contributions

tscse_s - minus self-employed insurance contributions

DefIL on extended taxable income
name il_taxableY_ext

il_taxableY + taxable income

poa + plus old age pension

...

...

DefIL on disposable income
name ils_dispy

ils_origy + original income

ils_ben + plus benefits

ils_tax - minus taxes

ils_sicee - minus employee insurance contributions

ils_sicse - minus self-employed insurance contributions

Example 1 shows the most common approaches to define
incomelists. The first function illustrates the most basic definition of
an incomelist as the sum of several variables. The incomelist
specifies taxable income and is named il_taxableY (parameter
name). It consists of two variables, which are added (+), yem
(y=income, em=employment) and yse (se=self-employment), and
two variables, which are subtracted (–), tscee_s (t=tax, sc=social

contribution, ee=employee, _s=simulated) and tscse_s (se=self-
employed). The second function in example 1 illustrates that
incomelists can be components of other incomelists. It defines
extended taxable income by an incomelist named il_taxableY_ext to
be composed of the incomelist il_taxableY and the variable poa
(p=pension, oa=old age). The third function in example 1 shows the
standard definition of EUROMOD disposable income by the
incomelist ils_dispy. It is composed of five other incomelists, where
original income (ils_origy) and benefits (ils_ben) are added, whereas
taxes (ils_tax) and social insurance contributions for employees
(ils_sicee) and self-employed (ils_sicse) are subtracted. Note, that
the names of incomelists always start with il_ or ils_, where ils_
denotes system or standard incomelists. These are incomelists,
which must be defined for each country. Also note the ... in example
1. They imply that some definitions are not visible, i.e. the definitions
of ils_origy, ils_ben, etc., as it is not possible to use an incomelist as
a component of another incomelist without defining it beforehand.
Moreover, if an incomelist is composed of one or more simulated
variables, these variables must be calculated before any use of the
incomelist, otherwise the model issues a warning.[1] For example, if
the simulated variable bch_s (b=benefit, ch=child, _s=simulated) is a
component of a means-test-incomelist, the respective child benefit
must be calculated before the means test.
Example 2:

Policy SL_demo Comment

DefIL on
name il_AbstractExample

yem +0.5 half of employment income

ils_ben –2 minus 2*benefits

Example 2 creates a not very realistic incomelist called
il_AbstractExample, to illustrate that the components of an incomelist
can be fractions or multiples of variables or other incomelists. It
subtracts incomelist ils_ben twice from half of the variable yem.

[1] The model initialises all simulated variables by a value called VOID, which amounts to
0.0000000000001, and issues an error message if such a VOID-variable is used (except of
course as an output variable).

The system functions DefTU and UpdateTU
The possibility of tailoring assessment units for any particular purpose,
is one of the big strengths of EUROMOD, but also requires careful
application and some mental effort. The function DefTU allows for
defining assessment units. In principle the function can be applied in
any policy. For reasons of transparency, assessment units are however
usually defined centrally in the special policy TUDef_cc. This rule may
be disregarded if a particular assessment unit is just used temporarily
in one special policy.
Once an assessment unit is defined it can be used by any subsequent
function and policy. It is however important to know, at which point of
the model spine the values of variables (and derivatively incomelists)
are assessed. An example may help to understand this issue and its
implications. Imagine a family assessment unit, defining a child as a
person with "income" below a certain amount. At the start of the model
spine this income may not be known, as benefits and taxes are not yet
calculated. Therefore, assessing the income at this point would need to
leave out any simulated variables. As this is not a good solution, the
value of variables is assessed once the assessment unit is first used.
[1] Note, however, that from this point the value is not reassessed!
That means, if the income refers to a variable that changes after the
first usage of the assessment unit and the assessment unit is reused
after this change, everybody defined as child in first instance will still
be a child, even if the income condition is not valid anymore. The
model applies this behaviour as, for consistency reasons, it does not
want to allow a change in the status of a person (i.e. a child becoming
an adult, following this example) within the same simulation (at the
same point in time). This is aggravated if units change, i.e. if persons
drop out of their original unit, as they are e.g. not a child anymore. As
this behaviour still may be unwanted, the function UpdateTU provides
the possibility to reassess any assessment unit conditions, as will be
described below. Let’s however start with more basic issues.

Types and members of assessment units

Example 1 illustrates three very basic uses of the function DefTU and
introduces the parameters type and members.
Example 1:

Policy SL_demo Comment

DefTU on
name household_sl

type HH

DefTU on
name individual_sl

type IND

DefTU on
name family_sl

type SUBGROUP

members Partner & OwnChild

The three definitions of assessment units in example 1 mainly differ by
their composition, which is primarily described by the parameter type.
There are three possible types:

HH denotes that all members of the household belong to the same
assessment unit.
IND denotes that each member of the household forms its own
assessment unit.
SUBGROUP denotes that the household may be split into several
assessment units of different size. Which household member
belongs to which unit primarily depends on the parameter
members.

Some example households may illustrate these types.
description idhh idperson idpartner idmother idfather dag household_sl individual_sl family_sl

family

1 101 102 0 0 30 A A A

1 102 101 0 0 28 A B A

1 103 0 102 101 3 A C A

1 104 0 102 101 1 A D A

family
2 201 202 0 0 56 A A A

2 202 201 0 0 55 A B A

lone parent
3 301 0 0 0 35 A A A

3 302 0 301 0 6 A B A

single 4 401 0 0 0 25 A A A

two singles 5 501 0 0 0 22 A A A

living together 5 502 0 0 0 23 A B B

large family

6 601 602 606 0 48 A A A

6 602 601 0 0 45 A B A

6 603 0 602 601 20 A C A

6 604 0 602 601 15 A D A

6 605 0 602 601 10 A E A

6 606 0 0 0 70 A F B

For the assessment unit household_sl, with parameter type set to HH,
all members of all household types belong to one unit, the unit A.[2] In
contrast, for the assessment unit individual_sl, with parameter type set
to IND, all members of all household types belong to a different unit,
units A to F. For the assessment unit family_sl, parameter type is set to
SUBGROUP, i.e. the household is potentially split up into several units.
With respect to the parameter members such a unit comprises
Partners and OwnChildren. To interpret this, one needs to know that
these relations are conceived in relation to the "head" of the
assessment unit, i.e. the parameter members must be read as follows:
an assessment unit, as defined by family_sl, consists of the "head",
her/his "partner" and their "own children". The paragraphs below will
explain the double quoted terms in detail, for now we settle for their
intuitive meaning. Household 1 consists of a head, a partner (note
variable idpartner) and their two own children (note variables
idmother/idfather), therefore they all belong to one unit A. Household 2
consists of a couple, i.e. head and partner, they also belong both to
unit A. Household 3 consists of a lone parent and her/his child, i.e.
head and own child, consequently they also belong both to unit A.
Household 4 is a single household, obviously there can be only one
unit (A). As this gets boring, household 5 is split into two one-person
units A and B. The two singles are neither partners nor children of
each other, therefore they form separate units. Finally, household 6
consists of unit A, comprising the head (person 601), her/his partner
(person 602, note variable idpartner) and their children (603, 604 and
605, note variables idmother/idfather). The grandparent (606) forms an
own unit B, as she/he is neither partner nor child of the head. Actually,
with the information at hand, person 601 was arbitrarily defined as
(first) head, which leads us to the next paragraph …

Defining the head of an assessment unit
The basic definition of the head is more or less the only "hard wired"
part of the assessment unit definition and reads as follows: the head is
the richest member of the unit; if there are two or more equally rich
persons, the oldest is the head; if there are two or more equally rich
and equally old persons, the person with the lowest idperson is the
head. "Richest" is defined by the variable or incomelist indicated by
parameter HeadDefInc, which is set to ils_origy by default. Age is
unsurprisingly defined by the variable dag. In fact, if the assessment
unit type is SUBGROUP, finding the head has to be repeated until all
members of the household are assigned to a unit. That means, firstly
(simplifying) the richest person of the household is found as first head
and all persons fulfilling the relations defined by parameter members
are assigned to her/his unit. Then, if any household members are not
yet assigned, the richest person among them is found as the second
head and all not yet assigned persons fulfilling the relations defined by
parameter members are assigned to her/his unit. The last sentence is
repeated until all household members are assigned to a unit. Now it
becomes clear, why it was arbitrary to declare person 601 as the first
head – it contained the implicit assumption, that he/she is richer than
anyone else in the household.
Though the head condition cannot be erased, it still can be further
defined by using the parameter ExtHeadCond, which stands for
extended head condition. Example 2 demonstrates its use.
Example 2:

Policy SL_demo Comment

DefTU on
name household_sl

type HH

ExtHeadCond dgn=0

StopIfNoHeadFound no

If an extended head condition is defined, only persons fulfilling the
condition can be head. That means, example 2 describes a matriarchal
society, as only women can be head. Among the women it is still the
richest (oldest, …) who is chosen to be head. This condition, however,
entails a problem, as the model, for obvious reasons, does not allow

for headless households. So what happens to womanless households?
Due to the parameter StopIfNoHeadFound (whose default value is no)
the model will drop the extended head condition where necessary, i.e.
if there is no person (left within the not yet assigned household
members) fulfilling the condition, and the head is found by the usual
process. If however the StopIfNoHeadFound parameter was set to
"yes", the application would issue an error message once it comes
across a household without any women and stop its execution.
Note, that the extended head condition has a default value of
!IsDepChild. That means that, if the parameter is not explicitly defined,
children cannot be head and, if the parameter StopIfNoHeadFound is
also set to "yes", the model will issue an error message if there are
adultless households. To understand the rational of these defaults,
consider the following household, a child condition of being younger
than 18 and parameter members set to Partner & OwnDepChild.

idperson idpartner idmother idfather dag ils_origy ExtHeadCond=
!IsDepChild ExtHeadCond=1

101 102 0 0 44 0 A B

102 101 0 0 40 0 A B

103 0 102 101 14 0 A B

104 0 102 101 17 100 A A

The 17 years old person 104 is a dependent child, with respect to the
condition assumed above. However, he/she is also the "richest" person
in this very low income household. Without the extended head
condition set to !IsDepChild, person 104 becomes the first head,
without any other persons in her/his unit (he/she has no partner or
children). Person 101 becomes the second head with persons 102
(partner) and 103 (dependent child) in her/his unit. In contrast, with the
extended head condition set to !IsDepChild, person 104 is out ruled to
be head. Instead person 101, being the oldest, becomes the first head
with all other household members in her/his unit, including person 104,
as he/she is his/her child. Hence, the default extended head condition
ensures that dependent children do not get separated from their
parents.
Disadvantageously, the approach entails a problem. If the child
condition generates adultless households, the model will issue and

error message and stop. This can be avoided by setting the parameter
StopIfNoHeadFound to "no", putting up with some child heads. If child
heads are unacceptable, one could still overwrite the extended head
condition (e.g. setting ExtHeadCond to 1), and use the parameter
NoChildIfHead, which is explained in more detail in the next paragraph.
Before turning to this, note that the default of parameter ExtHeadCond
is overwritten in example 2. If this is unwanted, the parameter must be
changed to Default & dgn=0. This will be explained in more detail in
the next section.

Defining dependent children
The previous paragraph described the conditions for determining the
head and the next paragraph will describe a couple of conditions
defining other "statuses" within the assessment unit. This paragraph
picks up the condition for being a dependent child. An own paragraph
is devoted to this issue, not only it is one of the most important parts of
assessment unit specifications, but also as it is frequently a
prerequisite for other conditions (as it is in fact the case for the already
discussed extended head condition !IsDepChild). Being a dependent
child is specified by the parameter DepChildCond. Example 3
illustrates the use of this parameter.
Example 3:

Policy SL_demo Comment

DefTU on
name household_sl

type HH

DepChildCond dag<=15 | (dag<=19 & IsInEducation)

In the example all persons up to 15 years are dependent children, as
well as persons up to 19 years, if they are in education. Note, that in
this example the child definition has no influence on the composition of
the assessment unit – as it is a household assessment unit anyway all
household members belong to the same unit. A child definition may
however still be necessary, if for example certain benefits depend on
the number of children. Sometimes it even makes sense to use the
parameter DepChildCond with an individual assessment unit. Anyway,

the next example illustrates the use of the child condition for assigning
household members to assessment units.
Example 4:

Policy SL_demo Comment

DefTU on
name family_sl

type SUBGROUP

members Partner & OwnDepChild

DepChildCond dag<=15 | (dag<=19 & IsInEducation)

An example household may provide an easier understanding of the
definitions in example 4.
idperson idpartner idmother idfather dag IsInEducation ils_origy IsDepChild assessment unit

101 102 0 0 44 no 2500 0 A

102 101 0 0 40 no 1200 0 A

103 0 102 101 21 no 1000 0 B

104 0 102 101 19 no 800 0 C

105 0 102 101 17 yes 0 1 A

106 0 102 101 10 yes 0 1 A

Person 101 is the first head of this household, as he/she is the richest.
He forms the assessment unit A together with person 102, his/her
partner, and persons 105 and 106, their dependent children. Persons
103 and 104 are no dependent children with respect to the definition of
parameter DepChildCond. Therefore, they do not belong to their
father’s assessment unit, but form own units B and C. You may be
puzzled by the fact, that in example 1 (for simplicity reasons) no child
definition was used. In this example members was set to Partner &
OwnChild instead of Partner & OwnDepChild. The difference will be
explained below.
Before turning to this two further parameters in context with the
determination of dependent children are presented in example 5.
Example 5:

Policy SL_demo Comment

DefTU on
name family_sl

type SUBGROUP

members Partner & OwnDepChild

DepChildCond dag<=15 | (dag<=19 & IsInEducation)

ExtHeadCond 1

NoChildIfHead yes

NoChildIfPartner yes

Again some example households may illustrate what these parameter
settings effect. Note, that the default extended head condition, which
usually prevents dependent children from being head, is "switched off"
– 1 means that everyone fulfils the condition, i.e. everyone can
potentially be a head.
idhh idperson idpartner idmother idfather dag IsInEducation ils_origy IsDepChild assessment unit

1 101 0 0 0 18 yes 0 1 0 A

2 201 202 0 0 21 no 1000 0 A

2 202 201 0 0 19 yes 0 1 0 A

3 301 302 0 0 40 no 0 0 B

3 302 301 0 0 39 no 0 0 B

3 303 0 302 301 18 yes 50 1 0 A

Household 1 consists of just one person, who needs to be the head, as
there is nobody else. However, person 101 is with respect to
parameter DepChildCond a dependent child, as she/he is in education
and not older than 19. With the parameter NoChildIfHead set to yes
this condition is "overruled", i.e. being a head predominates being a
dependent child. Note, that without providing any further parameters or
setting ExtHeadCond to 1, the model would issue an error message for
this household and stop, as the default of parameter ExtHeadCond
(!IsDepChild) does not allow for child heads. Another way of preventing
the stop was described above (setting parameter StopIfNoHeadFound
to no). This again highlights that modellers have many options at their
disposal, to set parameters as is useful for their purposes, however it
also demonstrates the necessity of putting some mental effort into
getting them right.
Household 2 consists of a young couple. Person 201 is head, as
she/he is the richest. Person 202 is her/his partner and therefore
belongs to her/his unit. Person 202 is in education and not older than
19, i.e. a dependent child with respect to parameter DepChildCond.
However, with the parameter NoChildIfPartner set to "yes" this
condition is "overruled", i.e. being a partner predominates being a
dependent child. Finally, household 3 consists of a couple without
income and their 18-year-old child, who has a tiny income. As there

are no preconditions for being head, this tiny income makes the 18-
year-old first head, though she/he is a dependent child with respect to
parameter DepChildCond. Her/his parents do not belong to her/his
unit, as they are neither her/his partner nor her/his children, therefore
they form an own unit. If this split up of a family is "good" or not
depends on the application. The subject will be further discussed in the
next section.

Defining "statuses" within the assessment unit
So far we have used the parameter members, without really explaining
how it works. One can intuitively get the meaning of Partners or
OwnChildren belonging to the assessment unit, however a clear
definition was missing up until now. In fact, there is a parameter, which
explicitly defines who is a partner. Example 6 illustrates its use.
Example 6:

Policy SL_demo Comment

DefTU on
name couple1_sl

type SUBGROUP

members Partner

DefTU on
name couple2_sl

type SUBGROUP

members Partner

PartnerCond head:idperson=idpartner

DefTU on
name couple3_sl

type SUBGROUP

members Partner

PartnerCond Default & IsMarried

The first assessment unit in example 6, couple1_sl, does not explicitly
define who is a partner. We have however seen, that couples still are
assigned to the same unit. This happens, because the parameter
PartnerCond has a default value, which is applied by the model if the
parameter is omitted. The first and the second assessment unit,
couple1_sl and couple2_sl, are in fact identically, as the parameter
PartnerCond is set to its default value, which is
head:idperson=idpartner. To understand this condition one needs to
know that conditions used in assessment unit definitions allow for two

special features (in addition to those provided in general by conditions,
see section EUROMOD Functions - The policy function Elig). One of
them is the possibility to use the prefixes head: and partner:. They
denote, that the subsequent variable refers to the head and the partner
of the unit, respectively. Please note, that the prefixes can only be
used with variables, but not with incomelists or queries. Knowing this
we can interpret head:idperson=idpartner, as being a partner means
that one’s own partner id is set to the head’s id. Finally, the third
assessment unit in example 6, couple3_sl, uses the second "extra
feature" provided by assessment unit conditions, Default, which simply
denotes the default setting of the respective condition. That means,
that the parameter PartnerCond of couple3_sl translates to
head:idperson=idpartner&IsMarried. In other words, this feature
provides the possibility to further define the default condition. In the
example, partners are not only identified by their id, but in addition they
must be married.
Now we are in the position to list the possible settings of the parameter
members and to interpret their meaning. The parameter allows for the
following "types" of unit members, to be combined by &:

Partner defined by the parameter PartnerCond
OwnDepChild defined by the parameter OwnDepCond
LooseDepChild defined by the parameter LooseDepChildCond
OwnChild defined by the parameter OwnChildCond
DepParent defined by the parameter DepParentCond
DepRelative defined by the parameter DepRelativeCond

All of the ...Cond parameters have default values, which are intended
to ease model developer’s life, by being set to plausible values.
However, what may be plausible in general can make no sense at all
for a special purpose. Therefore developers need to be aware of these
default settings and check if they match their particular requirements.
To understand the shortly following discussion of each ...Cond
parameter’s default value, and even more for changing or extending

them, it is necessary to know how the model processes the single
conditions. For example, if a condition uses the prefix :head, the head
must be identified beforehand. Similarly, if a condition uses IsDepChild,
then the parameter DepChildCond must be evaluated before. The
model interprets the conditions in the following order:[3]

1. DepChildCond
2. LooseDepChildCond
3. assessing head using amongst others ExtHeadCond
4. PartnerCond
5. OwnChildCond
6. OwnDepChildCond
7. DepParentCond
8. DepRelativeCond
9. LoneParentCond

The order tries to reflect the most common dependencies by
interpreting relatively "independent" conditions first, to allow for their
usage in subsequent conditions. Note, that not all of the conditions
define a "type" of the parameter members, namely DepChildCond,
ExtHeadCond and LoneParentCond don’t. ExtHeadCond specifies the
head and therewith also defines a "member type" (as explained above,
the head is always member and therefore not explicitly listed by the
parameter members). DepChildCond serves two purposes. Firstly,
knowing who is a dependent child is frequently a prerequisite for the
other "type" conditions. Secondly, the child status is often requested in
"normal" conditions of policy functions, e.g. if it entitles to certain
benefits. The latter is also the rational for the parameter
LoneParentCond. This raises the question, how a status defined by
one of the ...Cond parameters can be retrieved, to be used e.g. with
the function elig. The answer is, that for each condition a respective
query exists, e.g. the query connected to the parameter PartnerCond is
called IsPartner, the query connected to the parameter DepChildCond

is called IsDepChild, etc. See section EUROMOD Functions - Queries
for a full list.
Now, let’s turn to the default values of the single conditions. The
following listing explains them in words, for a formal (and therewith
possibly more precise) definition see section EUROMOD Functions -
Summary of parameters for functions DefTU and UpdateTU.

DepChildCond: If the parameter is not explicitly defined, nobody
is a dependent child. There is however a default setting that can
be assessed with Default, whose main purpose is to avoid the split
up of families and is explained in more detail below.
LooseDepChildCond: The default definition of a "loose"
dependent child describes a person, who is a dependent child with
respect to DepChildCond, but has neither mother nor father with
respect to the variables idmother or idfather.[4] Loose dependent
children are frequently a problem, if they form their own
assessment unit, as they are not identified as the child of some
adult. Imagine a three years old receiving its own child benefit, as
it is the head of its own unit. Therefore the parameter members
allows for the explicit assignment of loose dependent children – if
the type LooseDepChild is used, they are assigned to the first
head’s unit. In fact, the three years old example should be theory,
as this is bad dataset definition. However, with a generous
DepChildCond (e.g. high age limits) loose dependent children are
still possible.
ExtHeadCond: This parameter and its default setting is described
above.
PartnerCond: This parameter and its default setting are described
above.
OwnChildCond: The default definition of an own child is being the
child of the head or her/his partner (as defined by PartnerCond)
with respect to the variables idmother or idfather.[4] Note, that a
such defined child does not need to be a dependent child (as
defined by DepChildCond), which may lead to odd constellations.
For illustration, imagine an extended family, where a 70-year-old

grandfather with a high pension lives with his 40 years old son and
his his partner and children. Setting members to OwnChild may
result in splitting the household in a unit with the grandfather and
his son and another unit with the partner and the children. More
about this below.
OwnDepChildCond: The default definition of an own child is
being an own child (as defined by OwnChildCond) and being a
dependent child (as defined by DepChildCond). In general
parameter OwnDepChild is preferable over OwnChild to be used
with parameter members.
DepParentCond: The default definition of a dependent parent is
being the parent of the head or her/his partner (as defined by
PartnerCond) with respect to the variables idmother or idfather.[5]
Note, that this condition in fact does not define any "dependency".
That’s because such a dependency can hardly be generalised, but
depends on circumstances. That means that, if the parameter
members includes the type DepParent, it is nearly always
necessary to further define the parameter DepParentCond as
Default&….
DepRelativeCond: The default definition of a dependent relative
is 0, i.e. not being a dependent relative. That means that, if the
parameter members includes the type DepRelative, the parameter
DepRelativeCond must define such a dependent relative.
LoneParentCond: The default definition of a lone parent is being
the parent of at least one dependent child (as defined by
DepChildCond) with respect to the variables idmother or
idfather[4] and not having a partner with respect to variable
idpartner.

Avoiding to split up families
This section presents some parameters, which may help to avoid the
split up of households into odd units. Let’s start this by explaining the
rational for the Default of the parameter DepChildCond. As briefly
mentioned above, if the parameter is not explicitly defined, nobody is a

dependent child. There is however a default setting that can be
assessed with Default, which translates to !isparent & idpartner=0. The
first part of this setting !isparent prevents that children get separated
from their child-parents and the second part idpartner=0 prevents that
partners get separated from their child-partners. This is illustrated by
example 7.
Example 7:

Policy SL_demo Comment

DefTU on
name family1_sl

type SUBGROUP

members Partner & OwnDepChild

DefTU on
name family2_sl

type SUBGROUP

members Partner & OwnDepChild

DepChildCond dag<20 & ils_origy=0

DefTU on
name family3_sl

type SUBGROUP

members Partner & OwnDepChild

DepChildCond Default & dag<20 & ils_origy=0

Again some example households may illustrate what these parameter
settings effect.

idhh idperson idpartner idmother idfather dag ils_origy
IsDepChild assessment unit

fam1 fam2 fam3 fam1 fam2 fam3
1 101 102 0 0 37 2500 0 0 0 A A A

1 102 101 0 0 35 0 0 0 0 A A A

1 103 0 102 101 6 0 0 1 1 B A A

1 104 0 102 101 1 0 0 1 1 C A A

2 201 202 0 0 45 2000 0 0 0 A A A

2 202 201 0 0 43 1500 0 0 0 A A A

2 203 204 202 201 19 0 0 1 0 B A B

2 204 203 0 0 18 0 0 1 0 B B B

3 301 302 0 0 45 2000 0 0 0 A A A

3 302 301 0 0 43 1500 0 0 0 A A A

3 303 0 302 301 19 0 0 1 0 B A B

3 304 0 303 0 0 0 0 1 1 C B B

To come straight to the point: the first assessment unit definition in
example 7, family1_sl, is nonsense, as it does not provide a definition

of dependent children. The second definition, family2_sl, at first view
seems ok, but it involves some problems. Finally, the third definition,
family3_sl, overcomes these problems, whether however the
suggested solution is the desired depends on the concrete
requirements. Now, let’s investigate these statements. Household 1:
mother father and two small children. family1_sl does not even come
up with this common family structure. The children form their own unit
as, due to the missing parameter DepChildCond, nobody is a
dependent child. family2_sl and family3_sl seem ok, persons 103 and
104 are dependent children and therefore assigned to unit of their
parents. Household 2: a young couple, having no income, lives with
the parents of one partner. In this case all three family definitions show
a split that is not obviously odd. With the definitions of family1_sl and
family3_sl the young couple forms an own unit. In both cases this is
caused by the fact that the 19 years old is not a dependent child and
therefore gets split from her/his parents. With the definition of
family1_sl this is caused by the missing dependent child condition, in
contrast with the definition of family3_sl the 19 years old is a
dependent child with respect to the age and income conditions,
however she/he does not fulfil the condition idpartner=0. family2_sl
separates the child in law from the rest, as the 19 years old in this case
is a dependent child and therefore belongs to the unit of her/his
parents. As a result the child in law is left over without any relation
entitling her/him to belong to the unit of the parents of her/his partner.
Whether any of these splits is ok, depends on requirements. Finally,
household 3 comprises a young mother, having no income, who lives
with her child and her parents. As with household 1, family1_sl shows
an odd split due to the missing dependent child condition. This time
also family2_sl exhibits an odd split, as it separates the small child
from the rest of the family, for the same reasons why the child in law
was split from the rest in household 2. The grandchild has no relation
entitling it to belong to the unit of her grandparents. Note, that not even
including loose dependent children would solve the problem, because
the baby is no loose child, as it has a mother. Whether the split with
family3_sl is desired depends on requirements, at least it is plausible.
The young mother stays together with her child, as the condition

!isparent out rules her for being a dependent child herself, but the two
get separated from the grandparents.
As foretelled the splits of family3_sl are "not odd", but intuitively one
would think that the 19 year old with a partner and the young mother,
both having no income, are dependent children and therefore should
belong to the units of their parents. Example 8 illustrates how to
accomplish this by using the parameters AssignDepChOfDependents
and AssignPartnerOfDependents, which do what their names imply.
Example 8:

Policy SL_demo Comment

DefTU on
name family4_sl

type SUBGROUP

members Partner & OwnDepChild

DepChildCond dag<20 & ils_origy=0

AssignDepChOfDependents yes

AssignPartnerOfDependents yes

The table below shows how this setting effects the three households
introduced above.
idhh idperson idpartner idmother idfather dag ils_origy IsDepChild assessment unit

1 101 102 0 0 37 2500 0 A

1 102 101 0 0 35 0 0 A

1 103 0 102 101 6 0 1 A

1 104 0 102 101 1 0 1 A

2 201 202 0 0 45 2000 0 A

2 202 201 0 0 43 1500 0 A

2 203 204 202 201 19 0 1 A

2 204 203 0 0 18 0 1 A

3 301 302 0 0 45 2000 0 A

3 302 301 0 0 43 1500 0 A

3 303 0 302 301 19 0 1 A

3 304 0 303 0 0 0 1 A

With the definitions of family4_sl the incomeless child of household 2
and the young mother of household 3 now belong to the units of their
parents. But also the child in law of household 2 belongs to the unit of
her/his parents in law, as well as the small child of household 3
belongs to the unit of its grandparents, as they now have relationships
(to their partner respectively mother) entitling them to it.

Using conditions which refer to income
Income related conditions are frequently used elements in defining
assessment units. For example, child definitions often contain upper
limits on income. However, as elaborated in section EUROMOD
Functions - Parameter values and the assessment unit, once a unit
bigger than the individual is concerned the level of interpreting
variables or incomelists is not necessarily intuitively clear at the outset.
Therefore, the following examples intend to exemplify how to get
income related conditions right. To understand the examples, please
note, that the rules outlined in section EUROMOD Functions -
Parameter values and the assessment unit are also valid for the
function DefTU.
Example 9 illustrates a child condition, which refers to the child’s
income.
Example 9:

Policy Grp/No SL_demo Comment

DefTU on
name example1_sl

type SUBGROUP

members Partner & OwnDepChild

DepChildCond dag<20 & ils_origY#1<200#m

#_level 1 individual_sl

In the example dependent children are persons younger than 20, with
own income, as defined by incomelist ils_origY, below 200 Euro
monthly. Note, that without specifying that ils_origY should be
assessed on individual level it would be assessed on assessment unit
level.
Example 10 illustrates a child condition, which refers to the income of
the child’s parents.
Example 10:

Policy Grp/No SL_demo Comment

DefTU on
name example2_sl

type SUBGROUP

members Partner & OwnDepChild

DepChildCond dag<20 & GetParentsIncome#1<=1000#m

#_income 1 ils_origy

In the example dependent children are persons younger than 20,
whose parents’ (as defined by variables idmother and idfather[6])
income, as defined by incomelist ils_origY, does not exceed 1,000
Euro monthly. (For the definition of the query GetParentsIncome also
see section EUROMOD Functions - Queries.)
Example 11 shows two dependent parent conditions, which refer to the
joint income of a potentially dependent parent and her/his partner.
Example 11:

Policy Grp/No SL_demo Comment

DefTU on
name example3_sl

type SUBGROUP

members Partner & OwnDepChild & DepParent

DepChildCond dag<20

DepParentCond dag>60 & GetParentsIncome#1<=1000#m

#_income 1 ils_origy

DefTU on
name example4_sl

type SUBGROUP

members Partner & OwnDepChild & DepParent

DepChildCond dag<20

DepParentCond dag>60 & ils_origy#1<=1000#m

#_level 1 couple_sl

The two assessment unit definitions in example 11 do the same. Both
define dependent parents as persons aged older than 60. The joint
income, as defined by incomelist ils_origY, of the person and her/his
partner may not exceed 1,000 Euro monthly. The only difference is,
that the query GetCoupleIncome used in the first version does not
allow for an own definition of "partner", but refers to the partner defined
by the variable idpartner (also see section EUROMOD Functions -
Queries), while in the second version the assessment unit couple_sl
may use the parameter PartnerCond to specify who is a partner.
Example 12 illustrates a dependent parent condition which refers to the
potentially dependent parent’s own income as well as her/his partner’s
income.
Example 12:

Policy Grp/No SL_demo Comment

DefTU on
name example4_sl

type SUBGROUP

members Partner & OwnDepChild & DepParent

DepChildCond dag<20

DepParentCond dag>60 & ils_origy#1<=1000#m & GetPartnerIncome#2<=500#m

#_level 1 individual_sl

#_income 2 ils_origy

In the example dependent parents are persons aged older than 60,
whose own income, as defined by incomelist ils_origY, does not
exceed 1,000 Euro monthly. Moreover, the income of their partner (with
respect to variable idpartner) may not exceed 500 Euro monthly. (For
the definition of the query GetPartnerIncome see section EUROMOD
Functions - Queries).

Updating assessment units
As outlined above, household members are assigned to respective
units once an assessment unit is first used. This assignment is not
changed with subsequent uses, even if circumstances change, i.e.
some conditions are not fulfilled anymore or get fulfilled at a later point
in the model spine. However, the reassessment of the units can be
enforced by using the function UpdateTU.
Example 13 intends to illustrate these procedures.
Example 13:

Policy Grp/No SL_demo Comment

DefIL on incomelist definitions
name il_earns

yem +

yse +

DefIL on
name il_MeansTest

il_earns +

bed_s +

DefTU on assessment unit definitions
name individual_sl

type IND

DefTU on
name family_sl

type SUBGROUP

members Partner & OwnDepChild

DepChildCond dag<25 & il_MeansTest#1<=500#m

#_level 1 individual_sl

ArithOp on child benefit

formula 0 initialise variable bed_s

output_var bed_s for the means test

TAX_UNIT individual_sl

ArithOp on
formula 50#m * nDepChildrenInTu

output_var bch_s

TAX_UNIT family_sl

Elig on education benefit
elig_cond IsInEducation & dag>17 & il_earns#1<1500#m

#_level 1 family_sl

TAX_UNIT individual_sl

ArithOp on
who_must_be_elig one

formula 600#m

output_var bed_s

TAX_UNIT individual_sl

UpdateTU toggle assessment unit update
name family_sl

BenCalc on social assistance
comp_cond 1 IsHead

comp_perElig 1 1000#m

comp_cond 2 IsPartner

comp_perElig 2 500#m

comp_cond 3 IsDepChild

comp_perElig 3 100#m

withdraw_base il_earns

withdraw_rate 1

output_var bsa_s

TAX_UNIT family_sl

Please note, that packing all these definitions and policies into one
policy sheet would be very bad programming style, and here is just
done for the sake of simplification. Let’s very briefly verbalise the
essential ongoings in the example, to then research the implications by
looking at a sample household. The relevant assessment unit is
family_sl, consisting of head, partner and own dependent children,
where dependent children are defined as being younger than 25 and
having no own income above 500 Euro monthly. The relevant income
is composed of earnings and an education benefit, received by
students older than 17, whose families dispose over earnings of less
than 1,500 Euro monthly. Two benefits are calculated using the
assessment unit family_sl: firstly, a child benefit paying monthly 50
Euro per child, and secondly, a social assistance benefit paying 1,000

Euro monthly for the head, 500 Euro for the partner and 100 Euro for
each dependent child in the assessment unit. Earnings are totally
withdrawn from this benefit. The following table shows the outcomes of
these benefits for an exemplary household, once with not updating the
units defined by family_sl for its second application and once with
updating them. Note, that the switch of the function UpdateTU is set to
toggle. For the example this is to be understood as it could be either
switched on or off, as circumstances require.

idperson idpartner idmother idfather dag IsInEduc il_earns il_Means
Test

il_Means
Test upd. family_sl family_sl

updated

bsa_s
not

updated

bsa_s
updated

101 102 0 0 45 0 1000 1000 1000 A A 700 600

102 101 0 0 40 0 0 0 0 A A 0 0

103 0 102 101 18 1 0 0 600 A B 0 1000

103 0 102 101 10 0 0 0 0 A A 0 0

The last two columns of the table show that there is a considerable
difference in social assistance depending on whether the units are
updated or not before calculating this benefit. This is caused by the 18-
year-old student receiving the education benefit, which is part of the
means test of the dependent child condition. As the education benefit
is however calculated after the first use of the assessment unit
family_sl in the child benefit, the 18 year old is initially identified as
dependent child and belongs to the unit of her/his parents. Only if the
function UpdateTU is used to update the units, she/he forms her/his
own unit for the social assistance benefit.

Excursus: using footnote parameters to change the
assessment unit of operands
Section EUROMOD Functions - Footnote parameters for the further
specification of operands explains how to change the level of
assessment for single operands of a formula or a condition. A special
rule must be taken into account when this possibility is used, which is
explained here and not before, as the knowledge imparted in the
current section is of advantage in understanding the rule. Moreover,
though more advanced users definitely should be aware of it, the rule
better fits in an excursus, as it is a bit challenging. The rule reads: the
assessment unit of the operand must "contain" the assessment

unit of the function. Consider the following examples to understand
this "container rule".
Example 14:

Policy SL_demo Comment

ArithOp on workable example
formula 500#m – yem#1

#1_level household_sl

lowlim 0

output_var sin02_s

TAX_UNIT family_sl

ArithOp on not workable example
formula 500#m – yem#1

#1_level family_sl

lowlim 0

output_var sin02_s

TAX_UNIT household_sl

The first function is workable (though one could question its sense).
The function’s assessment unit is the family, while the assessment unit
of the operand yem is changed to household. Households without
question contain (one or more) families. Thus each family receives 500
Euro minus all employment income received by anyone in the
household (containing the respective family). The second function puts
things the other way round. The function’s assessment unit is the
household, while the assessment unit of the operand yem is the family.
What would this mean? Each household receives 500 Euro minus the
employment income of which family within this household? Please
note, that a violation of the container rule leads to an error message.[7]
For the sake of order, a rule needs an exception. The exception for the
container rule concerns operands in conditions. They can be changed
to any assessment unit. Example 15 illustrates why.
Example 15:

Policy Grp/No SL_demo Comment

Elig on
condition dag<50 & yem<1500#m & poa#1=0

#_level 1 household_sl

TAX_UNIT family_sl

In the example a household member becomes eligible if she/he is
younger than 50, the employment income of her/his family does not

exceed 1,500 Euro monthly, and nobody within the household she/he
lives in receives old age pension. The formulation "a household
member becomes eligible" instead of "the household becomes eligible"
already provides a hint for the rational of the condition exception. In
fact conditions are always evaluated on individual level, any
assessment unit level condition just means that all individuals within
the assessment unit fulfils the condition. That means, on closer
examination, the condition exception is not really an exception, as one
always changes the assessment level from individual to some other
unit that necessarily must contain the individual as the smallest unit.

[1] A rather special case should be mentioned in this context. If an assessment unit is used
with the parameter #i_level, assessment unit formation only takes place if the function is
carried out for at least one unit. That means if no unit is ‘eligible’ (parameter
who_must_be_elig) the assessment unit is not formed.

[2] Please note, that the notation A,B,…,F just serves explanation purposes and is not really
used by the model. See section EUROMOD Functions - The system function DefOutput,
unitinfo parameters, for the possibility of putting out assessment unit settings.

[3] Note, that the list indicates the order in which the model operates the conditions, but not the
order in which the parameters should be defined, i.e. it is for example no problem to define the
parameter DepPartnerCond before the parameter DepChildCond.

[4] Respectively with respect to the variable idparent, if this variable is used in the dataset
instead of idmother and idfather.

[5] Respectively with respect to the variable idparent, if this variable is used in the dataset
instead of idmother and idfather. In this case also a person is a dependent parent, whose
partner (with respect to variable idpartner) is the parent of the head or her/his partner. The
latter takes into account, that only one parent can be defined by the variable idparent and
assumes that this parent’s partner is the other parent.

[6] Respectively with respect to the variable idparent, if this variable is used in the dataset
instead of idmother and idfather.

[7] To complicate things a bit further, individual assessment units are exempted from the
container rule as another rule applies: the individual within the unit to be taken into account is
the head. With this information the second function of the example would read as follows, if the
parameter #1_level was set to individual_sl: each household receives 500 Euro minus the
employment income of the head. To your relief, this exemption is nearly ever applicable and
just mentioned as a warning, as such (usually intransparent or even wrong) modelling does not
lead to an error message. The reason for the exception is of technical nature, as it allows for
the following (sensible) exception with respect to conditions.

The system function DefOutput
The function DefOutput allows for defining EUROMOD output. Usually one policy,
containing one function DefOutput, defines the content of one output file. Though in
principle the function could be applied in any policy this may not be advisable for
transparency reasons. Example 1 illustrates the different options in defining output.
Example 1:

Policy SL_demo Comment

DefOutput on
file example_output_1 name of output file

var idperson id of person

il ils_dispy disposable income

DefIL ils_dispy variables contained in incomelist disposable income

nDecimals 2 print two decimals

TAX_UNIT individual_sl output on individual level

The parameter file indicates the name of the text file, where the output should be written
to, in the example (not very inventive) example_output_1. The extension .txt can be
omitted. Note, that the output path is defined in the run dialog (see Working with
EUROMOD - Running EUROMOD). The parameter TAX_UNIT defines whether output
should be on individual level, as is the case in the example, or on another assessment
unit’s level – what this means will be explained on basis of example 2. The parameter
nDecimals defines the number of digits after the comma, in the example two. That means,
10.1234 will be outputted as 10.12, 10.6789 as 10.68 and 10 as 10.00. The rest of the
parameters determine the content of the output file. The parameter var simply tells that
the variable idperson should be printed. The parameter il tells that the incomelist ils_dispy
should be printed. In this case this concerns the value of the incomelist (i.e. the sum of
the comprised variables). The parameter DefIL, in contrast, tells that the value of each
entry of the incomelist ils_dispy should be printed.
In example 2 the parameter TAX_UNIT is set to household level. Therefore, output is
aggregate on household level (i.e. one row for each household), where rules of
aggregation are those defined in section EUROMOD Functions - Parameter values and
the assessment unit. That means employment income (yem) and disposable income
(ils_dispy) are household employment respectively disposable income. Similarly the
variables comprised in disposable income (parameter DefIL1) are printed on household
level. The variable idhh is the same for the whole household, i.e. there is no ambiguity.
Whereas, the variable dag (d=demographic, ag=age) refers to the age of the head of
household, as defined by the rules in section EUROMOD Functions - Parameter values
and the assessment unit.
Example 2:

Policy SL_demo Comment

DefOutput on
file example_output_2 name of output file

var idhh household id

var dag age of head of household

var yem household employment income

il ils_dispy household disposable income

DefIL1 ils_dispy components of disposable income on hh level

TAX_UNIT household_sl output on household level

Example 3 illustrates the application of another couple of parameters provided by the
function DefOutput. They allow the determination of the "status" of single assessment unit
members within the unit.
Example 3:

Policy Grp/No SL_demo Comment

DefOutput on
file example_output_3 name of output file

var idperson id of person

var dag age

var idpartner partner’s id

var idmother mother’s id

var idfather father’s id

il ils_origy person’s age

unitinfo_id 1 HeadID id of head of household

unitinfo_id 1 IsPartner person is partner of head

unitinfo_id 1 IsDependentChild person is a dependent child

unitinfo_id 1 IsLoneParent person is a lone parent

unitinfo_tu 1 household_sl unit info variables refer to whole household

TAX_UNIT indivdual_sl output on individual level

The example may produce the following output (inventing two illustrative households and
assuming plausible head, child, partner and lone parent definitions for the assessment
unit household_sl).
idperson idpartner idmother idfather dag ils_origy household_sl_HeadID household_sl_IsPartner household_sl_IsDepChild household_sl_IsLoneParent

101 102 0 0 40 3000 101 0 0 0

102 101 0 0 35 0 101 1 0 0

103 0 102 101 3 0 101 0 1 0

104 0 102 101 1 0 101 0 1 0

201 0 0 0 35 2500 201 0 0 1

202 0 201 0 6 0 201 0 1 0

The head of household 1 is the 40 years old father, as his original income (ils_origy) is the
highest, therefore the variable HeadID is set to his idperson for all assessment unit
members. The variable IsPartner is set to 1 for the 35 years old mother, as she is the
head’s partner denoted by the variable idpartner. For the two children, aged one and three
years, the variable IsDepChild is set to 1. The head of household 2 is the 35 years old
mother. The variable IsLoneParent is set to 1 for her, as she lives alone with her six years
old child. For the child the variable IsDepChild is set to 1.
Note, that the parameter unitinfo_tu set to household_sl is the relevant assessment unit
for determining the variables HeadId, IsPartner, IsDepChild and IsLoneParent, while the
parameter TAX_UNIT is set to individual_sl. Setting the parameter TAX_UNIT to e.g.
household_sl would not make much sense, as there would be only one row for each
household, not allowing for a proper indication of the assessment unit variables.
Finally, a comment on a specific warning in context with DefOutput. If a variable not
contained in the variable description file is listed in standard output (any output file named
_std.txt) the program, as an attempt to keep standard output clean, issues the warning
"Use of non-standard variable 'xxx' in standard output. Consider to use a standard
variable instead.".

The system functions DefVar and DefConst
The function DefVar allows for the definition of intermediate
variables, as illustrated by the following example.
Example 1:

Policy SL_demo Comment

DefVar on define variables for minimum and maximum of child benefits
mincb 0

maxcb 0

ArithOp on set value of minimum
formula il_earns*20% minimum for child benefits is 20% of earnings

output_var mincb

TAX_UNIT sben_family_sl

ArithOp on set value of maximum
formula il_earns*80% maximum for child benefits is 80% of earnings

output_var maxcb

TAX_UNIT sben_family_sl

BenCalc on education child benefit
... ...

lowlim mincb

uplim maxcb

output_var bched_s

TAX_UNIT sben_family_sl

BenCalc on child benefit for birth/adoption
... ...

lowlim mincb

uplim maxcb

output_var bchba_s

TAX_UNIT sben_family_sl

BenCalc on large family child benefit
... ...

lowlim mincb

uplim maxcb

output_var bchlg_s

TAX_UNIT sben_family_sl

In the example three child benefits are constrained by the same
minimum (20% of earnings) and maximum (80% of earnings). For
this purpose respective variables for the miminum (mincb) and
maximum (maxcb) are generated with DefVar. Note that the
variables are initially set to zero and the function ArithOp is used to

define their value. The reason for this approach is that DefVar is
designed to define variables and possibly initialise them with
constants (as e.g. zero), but not to fill them with person or household
specific values (note that the function has no TAX_UNIT).
In principle variables created by DefVar can be used in the same
way as variables defined in the variable description file (see Working
with EUROMOD - Administration of EUROMOD variables). However,
good modelling practise requires that they are only used as
intermediate variables, i.e. storing and outputting of major results is
reserved to variables described in the variable description file. In
contrast to these "regular" variables there is no naming convention
for intermediate variables and it is left to the developer to use
"telling" names, optimally something that informs about the purpose
of the variable.
The following example shows the usage of the parameter
var_monetary. The variable age_plus10 is defined as a non-
monetary variable and respectively set to age plus 10.
Note that, if var_monetary is not defined, variables (and constants)
are considered monetary, except if they are initiallised with a rate
(e.g. 0.03#mr), in which case they are considered non-monetary.[1]
Example 2:

Policy Grp/No SL_demo Comment

DefVar on define a non-monetary variable
age_plus10 1 0

var_monetary 1 no

ArithOp on set the variable to age plus 10
formula dag+10

output_var age_plus10

TAX_UNIT individual_sl

BenCalc on some usage of the above defined age variable
... ...

The function DefConst allows for the definition of constants: it is
common practise, that tax-benefit systems use certain "benchmarks"
in several policies. For example, the level of a minimum wage may
not only determine the minimum wage itself, but also be used as a
benchmark in other policies. Example 3 illustrates how to use the

function DefConst for such a purpose. Using constants, allows you to
specify the value only once and to use the constant in several
functions. It furthermore allows you to have a better overview of how
monetary values change overtime. It is in this sense similar to
footnotes (x_amount), but pooling information even further (i.e. all
key policy parameters in the same place).
Example 3:

Policy SL_demo Comment

DefConst on
$MinWage 1000#m

Elig on
elig_cond yem < $MinWage

TAX_UNIT individual_sl

BenCalc on
who_must_be_elig one

There are multiple differences in the way constants (generated by
DefConst) and variables (generated by DefVar) can be used. First of
all, variables can be monetary or non-monetary. When they are
monetary and used in a function where the TU contains multiple
individuals, they will return the sum of values of all TU members.
When they are non-monetary, they will return the value of the head.
Constants on the other hand, although they are always named as
monetary, they will always return the value of the TU head. This is
because their purpose is to be used as a fixed (or scalar) number.
Secondly, if a constant is defined without a Condition, then the same
value will be applied to all observations, and this constant can also
be used for run conditions (Run_Cond). In contrast, variables and
constants defined with conditions, cannot be used in run conditions,
as their value could be different for each individual. Finally, according
to the EUROMOD naming conventions, a constant’s name should
always start with the $ character (e.g. $MinWage). The designed
purpose of conditional constants is to be used for cases where a
specific threshold or amount can be different for different
observations in the database. For example in UK, the minimum
wage or the housing benefit could be different in London compared
to other areas.

Example 4:
Policy Grp/No SL_demo Comment

DefConst on
$MinWage 1000#m

$ChBen 200#m

$UnivCredit 500#m

Condition 1 drgn1 = 8 London

$MinWage 1 1200#m

$ChBen 1 250#m

$UnivCredit 1 600#m

Condition 2 drgn1 >10 Rural UK

$MinWage 2 800#m

$ChBen 2 180#m

$UnivCredit 2 450#m

In the above example, the minimum wage, child benefit and
universal credit isare different based on the region. Similarly, one
could use any condition (e.g. "dag < 25" for the minimum wage in
some years in Greece) to specify a different constant value for each
individual. Each constant can have only one definition without a
condition, which will act as the base/default value, and multiple
definitions of the same constant with conditions (also note that each
condition group can contain multiple constants). If there is no default
value defined, and there is also no matching condition, then a
warning is issued and the constant is given the value 0. If more than
one conditions are true, the values are applied in group order, so the
matching condition with the biggest group number will determine the
final constant value.

[1] More precise initiallised with a rate translates to initiallised with something ending with #?
r. This means that the mechanism may have unexpected results with formulas. For example
300#m * 0.03#mr is considered (counterintuitive) as non-monetary and 0.03#mr * 2 is
considered monetary.

The system function InitVars
The function InitVars allows for initialising variables.
Example 1:

Policy SL_demo Comment

InitVars on
sin01_s 0 initialise simulated variable with zero

yse 0 overwrite data variable with zero

sin02_s yem +
poa initialise simulated variable with the sum of employment- and pension-income

bchbals 0 will lead to a warning, if the variable bchbals does not exist in dataset, as it is not a simulated
variable (not ending with _s) and therefore tried to be read

sin03_s sin12_s will lead to a warning, if sin12_s is not set at this point in spine

sin04_s sin01_s will still lead to a warning, as sin01_s is only initialised in the same function

Example 2:
Policy SL_demo Comment

InitVars on
Run_Cond GetSystemYear = 2019 only carried out for systems with year 2019

sin01_s 2019 + 3

Example 3:
Policy SL_demo Comment

LoopPolicy_sl on this policy does the follwing: set sin01_s to 0; 10 times: add 1 to sin01_s;
result: 10 (without setting parameter InitOnce: result would be 1)

Loop on
Loop_Id AddUpLoop

Num_Iterations 10

First_Pol LoopPolicy_sl

Last_Pol LoopPolicy_sl

InitVars on

InitOnce yes
setting this parameter effects that sin01_s is initialised only once, i.e. here in the
first iteration of AddUpLoop, if not set or set to no, sin01_s would be initialised
in each iteration

sin01_s 0

ArithOp on
formula 1

output_add_var sin01_s

TAX_UNIT tu_individual_sl

Please consider the comments column to understand the behaviour
of the function for various conditions.

Note that the function does not have a TAX_UNIT. That means all
formulas are interpreted on the individual level.

The special functions Loop and UnitLoop
The looping functions allow for repeating part (or all) of the tax-
benefit calculations. As an example, for calculating marginal tax
rates at least part of the policies need to be calculated twice, once
for original income and once for marginally increased income. Loop
allows for such a loop over a group of policies. The loop is carried
out until the number of scheduled iterations is reached and/or the
break condition is fulfilled. As certain calculations may depend on the
current iteration a variable called loopcount_loopid is provided. If for
example the identifier (parameter loop_id) of the loop for the
marginal tax rate calculations is mtr, the variable loopcount_mtr will
take a value of 1 in the first loop and 2 in the second. This allows for
a respective condition to increase income in the second loop.
Moreover, if certain policies within the loop should not be repeated,
they can be switched off after the first iteration, by using
ChangeParam with the run_cond {loopcount_x>1}.
UnitLoop is a bit more special, it is carried out for all "entitled units"
within the household. Marginal tax rate calculations again serve well
to explain this. Households frequently do not comprise only one
person with (labour)income. Assume that a household’s marginal tax
rate should be calculated as the average of the tax rates realised if
each of the (labour)incomes is marginally increased in turn. UnitLoop
is designed to allow such computations. "Entitled units" are in this
case all persons with (labour)income. As loop UnitLoop provides a
loop count variable. This variable takes a value of one for the first
"entitled unit" (i.e. individual with (labour)income), a value of two for
the second, and so on. In addition a variable IsCurElig_loopid (e.g.
IsCurElig_umtr if the loop_id of the unit loop is umtr) is provided.
This variable is true for all members of the entitled unit currently
processed and false for all members of other units. These variables
allow for a respective condition to increase incomes in turn. In fact,
technically UnitLoop itself does nothing in particular with the entitled
unit (except setting IsCurElig_x true). It simply runs the household as

often over the functions included in the loop as there are entitled
small units. It is the developers task to implement "actions", by using
the variables provided by the loop. Despite the already mentioned
there are three further variables: nULElig_loopid indicates the
number of entitled small units within the household (and therewith
the number of iterations for this household); it is set (to the same
value) for all household members. IsULElig_loopid indicates whether
a specific small unit within the household is entitled; it is set to one
for all members of an entitled unit and to zero for all members of a
not entitled unit. IsEligInIter_loopid indicates in which iteration a
specific small unit is entitled; it is set (to the respective iteration
number) for all members of the small unit.
The examples below illustrate these variables:
idhh idperson idpartner yem nULElig_unit isULElig_unit isEligInIter_unit

loop_id=unit; elig_unit=individual, elig_unit_cond={yem>0}

1 101 102 1500 3 1 1

1 102 101 1000 3 1 2

1 103 0 500 3 1 3

1 104 0 0 3 0 VOID

2 201 0 0 0 0 VOID

3 301 302 2000 1 1 1

3 302 301 0 1 0 VOID

loop_id=unit; elig_unit=couple, elig_unit_cond={yem>0}

1 101 102 1500 2 1 1

1 102 101 1000 2 1 1

1 103 0 500 2 1 2

1 104 0 0 2 0 VOID

2 201 0 0 0 0 VOID

3 301 302 2000 1 1 1

3 302 301 0 1 1 1

The location of the loop functions is not important as they are
custom-treated by the model in the sense of their principle
independency of the policy and function order.
A final note on encapsulated loops: it may be reasonable that Loop
encapsulates UnitLoop and both loops run over the same policies. In
this case it is important to know how the programme identifies the
"inner" and "outer loop". If the first_xxx/last_xxx parameters are

used, the loop which is defined first will be the inner loop. If the
start_after_xxx/stop_before_xxx parameters are used, the loop
which is defined first will be the outer loop.[1] To make things clearer
one could also use the first_xxx/last_xxx parameters for the inner
loop and the start_after_xxx/stop_before_xxx parameters for the
outer loop (referring to the functions/policies preceding the first
respectively following the last function/policy of the loop).
Examples for the application of the loop functions can be found in
section EUROMOD Functions - The special functions Store and
Restore.

[1] This is due to the fact that loops are subsequently inserted using the references
indicated in the first_xxx/last_xxx start_after_xxx/stop_before_xxx parameters, i.e. ignoring
any meanwhile inserted loop functions.

The special functions Store and Restore
Store and Restore are primarily, though not exclusively, designed to
be used with the loop functions (see EUROMOD Functions - The
special functions Loop and UnitLoop). In this context they mainly
fufill two tasks. Firstly, they allow to back-up variables and set them
back to their initial (or some other previous) value after each iteration
and secondly they support storing the results of each iteration.
Example 1 illustrates the back-up functionality in a stylised way.
Store is used to back-up the variables yem, yse and all variables
contained in the incomelist il_pensions before the loop "abc" starts.
The very last function of the loop is a Restore, which sets the
variables back to their value at storing time by simply referring to the
corresponding Store (via the parameter postfix).
Example 1:

Policy SL_demo Comment

Loop on
loop_id abc

first_func ExampleStore_loopstart assuming that policy is called ExampleStore

last_func ExampleStore_loopend

num_iterations 10

Store on
postfix bkup

var yem back-up variable yem

var yse back-up variable yse

il il_pensions back-up all variables contained in incomelist il_pension

... on

... ... do something with the stored variables

Restore on
postfix bkup set the stored variables back to their initial value

In reality loops are rarely placed in just one policy but embrace
several policies or even the whole tax-benefit-calculations. In this
case incomelists (parameter ilX) help to store groups of variables, as
shown in the example.
Variables stored by Store cannot only be restored by Restore, rather
Store produces for each variable stored a back-up variable. This is

illustrated in Example 2.
Example 2:

Policy SL_demo Comment

Store on
postfix bkup store variables poa, yem, yse

il il_wkinc il_wkinc=yem+yse

var poa

... on

... ... do something ... possibly change poa, yem, yse

Restore on
postfix bkup set variables poa, yem, yse back to their value at storing time

DefOutput on
file example_out

var poa contains possibly changed value of poa

var poa_bkup contains value of poa at storing time

var yem contains possibly changed value of yem

var yem_bkup contains value of yem at storing time

var yse contains possibly changed value of yse

var yse_bkup contains value of yse at storing time

il il_wkinc =yem+yse (i.e. possibly changed value)

il il_wkinc_bkup =yem_bkup+yse_bkup (i.e. value at storing time)

TAX_UNIT individual_sl

As can be seen from the example (DefOutput), Store produces one
new variable for each variable it stores, irrespective if this variable is
indicated directly (parameter var) or contained in an incomelist
(parameter il). These variables inherit the features of their source
variables, i.e. if the source variable is for example monetary, the
copy is as well. Moreover, where the parameter il is used a copy of
the incomelist definition is generated. In the example this is the
incomelist il_wkinc_bkup containing the variables yem_bkup and
yse_bkup. In general the variables and incomelists produced by
Store can be used as any normal variable or incomelist. There are
minor differences, e.g. (for technical reasons) such incomelists
cannot be used with the parameter DefIL of DefOutput.
You may have asked yourself what "postfix" stands for. This will be
answered now (even if you have not posed yourself this crucial
question). "post" means that the indicated text is added to the end of
the source variables name in determining the storage variable’s

name. And "fix" points to a static text, in contrast to the parameter
postloop whose usage is illustrated in example 3.
Example 3:

Policy SL_demo Comment

Loop on
loop_id turn

first_func ExampleStore_loopstart assuming that policy is called ExampleStore

last_func ExampleStore_loopend

num_iterations 3

... on

... ... do something different in each turn of the loop

Store on
postloop turn store the results of each turn of the loop

var tin_s store model-calculated income tax

il il_sic store model-calculated insurance contrib. (tscee_s+tscse_s)

DefOutput on
file example_out

var tin_s_turn1 contains value of tin_s after the 1st iteration of the loop

var tin_s_turn2 contains value of tin_s after the 2nd iteration of the loop

var tin_s_turn3 contains value of tin_s after the 3rd iteration of the loop

var tin_s_turn contains value of tin_s after the last iteration of the loop

var tscee_s_turn1 contains value of tscee_s after the 1st iteration of the loop

var tscee_s_turn2 contains value of tscee_s after the 2nd iteration of the loop

var tscee_s_turn3 contains value of tscee_s after the 3rd iteration of the loop

var tscee_s_turn contains value of tscee_s after the last iteration of the loop

var tscse_s_turn1 contains value of tscse_s after the 1st iteration of the loop

var tscse_s_turn2 contains value of tscse_s after the 2nd iteration of the loop

var tscse_s_turn3 contains value of tscse_s after the 3rd iteration of the loop

var tscse_s_turn contains value of tscse_s after the last iteration of the loop

il il_sic_turn1 contains value of il_sic after the 1st iteration of the loop

il il_sic_turn2 contains value of il_sic after the 2nd iteration of the loop

il il_sic_turn3 contains value of il_sic after the 3rd iteration of the loop

il il_sic_turn contains value of il_sic after the last iteration of the loop

The example shows (DefOutput) that Store produces one new
variable per variable per iteration of the loop. Again, where the
parameter il is used copies of the incomelist definition are generated:
one per incomelist per iteration of the loop. Moreover, in each case
one variable/incomelist without an iteration number is generated
(tin_s_turn, il_sic_turn, etc.). These contain the most recent value of
the variable/incomelist. That means that after the three iterations of
the loop are terminated tin_s_turn has the same value as

tin_s_turn3. However, if the variable is used by some function, say
after the second iteration of the loop, it has the value of tin_s_turn2.
As the second application is rarely helpful (usually one could use
tin_s as well), the main purpose of these variables/incomelists
without an iteration number is with loops, which are ended by a
condition, i.e. the iteration number of the last turn is unknown after
the end of the loop.
It is possible for Restore to refer to a Store applying the parameter
post_loop. This is illustrated in example 4.
Example 4:

Policy SL_demo Comment

Loop on
loop_id turn

first_func ExampleStore_loopstart assuming that policy is called ExampleStore

last_func ExampleStore_loopend

num_iterations 3

Store on
post_loop turn store variable yem before each iteration of the loop

var yem

... on

... ... do something with yem

Restore on
postloop turn set yem back to its value before the first iteration

iteration 1

In the example Restore sets the variable yem back to the value it
had when Store was carried out in the first iteration of the loop, i.e. in
this case its original value. Actually, the example is quite artificial as
it is not very meaningful to store yem at the beginning of the loop
(yem_turn3 will finally have the value of yem before the 3rd iteration,
i.e. the value after the 3rd iteration gets lost), but illustrates the
usage of Restore with postloop in a traceable way. In fact using
Restore this way is somewhat tricky and should be done with care. If
for example Store was carried out – more meaningfully – at the end
of the loop, setting yem back to yem_turn1 would mean to reset it to
its value after the first iteration and not to its original value. Moreover,
if the parameter iteration is omitted, variables are set back to the
value they had when the corresponding Store was carried out most

recently (i.e. to the current value of the variables without iteration
number) – a mechanism usually not easily to follow.
If Store refers to a UnitLoop the set of storage variables and
incomelists is in principle the same, however their content needs
some further explanation respectively is different.
Example 5:

Policy SL_demo Comment

UnitLoop on
loop_id unit

first_pol ExampleStoreUL assuming that policy is called ExampleStoreUL

last_pol ExampleStoreUL

elig_unit individual_sl

ArithOp on
formula 1

output_add_var stm01_s

TAX_UNIT individual_sl

Store on
postloop unit

var stm01_s

Above example would produce the following output:
idhh idperson stm01_s_unit1 stm01_s_unit2 stm01_s_unit3

1 101 1 2 3

1 102 1 2 3

1 103 1 2 3

2 201 1 1 1

3 301 1 2 2

3 302 1 2 2

In principle the example simply counts the iterations of the loop and
writes the result to the variable stm01_s (ArithOp adds 1 to stm01_s
in each iteration). The number of iterations is determined by the
number of individuals in the household (parameter elig_unit set to
individual_sl), i.e. three for the first household, one for the second
and two for the third. In the first iteration of the unit loop stm01_s
takes a value of 1 for everyone, which is stored in stm01_s_unit1. In
the second iteration stm01_s takes a value of 2 for everyone, except
for the second household – as there is no second person there is no
second iteration for this household, so stm01_s keeps its value of 1.

This result is stored in stm01_s_unit2. Finally, in the third iteration
stm01_s takes a value of 3 for the first household (which includes
three individuals) and keeps its value for the other households
(which include less than three individuals). This result is stored in
stm01_s_unit3.
If UnitLoop would be extended by the parameter elig_unit_cond set
to {dag<50} the output would be the following:
idhh idperson dag stm01_s_unit1 stm01_s_unit2

1 101 51 1 2

1 102 48 1 2

1 103 20 1 2

2 201 30 1 1

3 301 58 VOID VOID

3 302 56 VOID VOID

The number of iterations this time is determined by the number of
"eligible" individuals in the household, i.e. persons younger than 50.
Consequently there are two iterations for the first household, one for
the second and none for the third. Note that for the third household
the functions embraced by the loop are not carried out, therefore
stm01_s stays undefined (VOID). Also note, that stm01_s takes the
same value for each individual within the household (irrespective of
the persons age). This illustrates that UnitLoop does not care about
who is eligible within the household, but simply carries the loop out
as often as there are eligible units in the household and leaves it to
the modeller to do something with the currently eligible unit.
Actually, the output would not contain "VOIDs" but zeros and, worse,
the model would issue a lot of warnings about outputting undefined
values. As this is quite likely to happen by using Store referring to a
UnitLoop, defoutput provides two useful parameters in this context:
suppress_void_message and replace_void_by. The first parameter
set to yes obviously avoids the warnings, however to not loose the
information, it may make sense to set undefined values to something
else than zero, which can be accomplished by the second
parameter.

It was not yet mentioned to which value stm01_s_unit, i.e. the
variable without an iteration number, is set. This was kept to the end
for two reasons. Firstly, handling these variables/incomelists with
Loop is really completely different from its handling with UnitLoop.
Secondly, it may take some effort to understand the mechanism – an
effort which is however (hopefully) worthwhile, as it makes output
more efficient and, if used properly, also more intuitive. The following
tables show the output of the two above examples extended by the
variable stm01_s_unit.

idhh idperson stm01_s_unit1 stm01_s_unit2 stm01_s_unit3 stm01_s_unit
1 101 1 2 3 1
1 102 1 2 3 2
1 103 1 2 3 3
2 201 1 1 1 1
3 301 1 2 2 1
3 302 1 2 2 2

idhh idperson dag stm01_s_unit1 stm01_s_unit2 stm01_s_unit
1 101 51 1 2 VOID

1 102 48 1 2 1
1 103 20 1 2 2
2 201 30 1 1 1
3 301 58 VOID VOID VOID
3 302 56 VOID VOID VOID

The rule leading to these results is: the variable without an iteration
number is set in each iteration to the value of the currently eligible
unit.[1] In the first example (first above table) this means: in the first
iteration persons 101, 201 and 301 are eligible, therefore for them
stm01_s_unit takes on the value of stm01_s_unit1 and stays VOID
for everyone else. In the second iteration persons 102 and 302 are
eligible, therefore for them stm01_s_unit takes on the value of
stm01_s_unit2. For everyone else stm01_s_unit keeps its value
where it has already one and stays VOID where it has not. Finally, in
the third iteration person 103 is eligible, therefore for her/him
stm01_s_unit takes on the value of stm01_s_unit3 and keeps its

value for everyone else. The story for the second example (second
of the above tables) is similar: in the first iteration persons 102 and
201 are eligible, therefore for them stm01_s_unit takes on the value
of stm01_s_unit1 and stays VOID for everyone else. In the second
iteration person 103 is eligible, therefore for her/him stm01_s_unit
takes on the value of stm01_s_unit2. For everyone else it stays
unchanged, which amongst others means that it stays undefined for
persons 101, 301 and 302 as they never were eligible.
These rather technical examples help to understand the mechanism,
but are not very conducive to see what this is good for. A more
practical example may contribute to a better understanding.
Example 6:

Policy SL_demo Comment

UnitLoop on
loop_id unit loop over the tax-benefit calculations

start_after_pol tudef_sl as often as there are persons with

stop_before_pol output_std_sl positive employment income

elig_unit individual_sl assuming that this policy is placed at the beginning of the loop

elig_unit_cond yem>0 (i.e. after tudef_sl)

ArithOp on

formula yem_bkup*
(1+IsCurElig_unit*0.01) increase employment income by 1% for each

output_add_var yem person with positive employment in turn

TAX_UNIT individual_sl assuming that original yem was stored in yem_bkup before the
loop

... on

...

Store on
loop_id unit store employment income of each iteration

var yem assuming that this policy is placed at the end of the loop (i.e.
before output_std_sl)

The example produces the following output.
idhh idperson yem_bkup yem_unit1 yem_unit2 yem_unit

1 101 1800 1818 1800 1818
1 102 1000 1000 1010 1010
1 103 0 0 0 0
2 201 0 VOID VOID VOID
3 301 2000 2020 VOID 2020
3 302 0 0 VOID VOID

One can see, that yem_unit shows marginally increased employment
income for each person with positive earnings from employment
(VOID for everyone else). Note that yem_unit1 shows the situation in
the first iteration of the loop, when yem of the first person in the
household with positive yem is marginally increased (persons 101
and 301) and yem of any other person with positive yem stays
unchanged (person 102). yem_unit2 shows the situation in the
second iteration of the loop, which is only carried out for households
with more than one person with positive yem. Now yem of the
second person in the household with positive yem is marginally
increased (person 102) and yem of any other person with positive
yem stays unchanged (person 101).
So far this is not a very interesting finding, what we actually want to
know is disposable income in these different situations. Adding
parameter il to Store and setting it to ils_dispy would produce the
following output:
idhh idperson yem_bkup yem_unit1 yem_unit2 yem_unit ils_dispy_unit1 ils_dispy_unit2 ils_dispy_unit

1 101 1800 1818 1800 1818 1308 1300 1308
1 102 1000 1000 1010 1010 1050 1060 1060
1 103 0 0 0 0 0 0 VOID
2 201 0 VOID VOID VOID VOID VOID VOID
3 301 2000 2020 VOID 2020 1500 VOID 1500
3 302 0 0 VOID VOID 0 VOID VOID

This result may still not be satisfactory, if one assumes that
household disposable income is a more telling measure of a
person’s means than individual disposable income. The parameter
il_level of Store allows to change the assessment level respectively.
(There are two further parameters in this context: var_level allows
changing the assessment level of a specific variable and level refers
to all variables and incomelists of the respective Store.) If il_level is
set to household_sl the output would change as follows:
idhh idperson yem_bkup yem_unit1 yem_unit2 yem_unit ils_dispy_unit1 ils_dispy_unit2 ils_dispy_unit

1 101 1800 1818 1800 1818 1308 1300 2358
1 102 1000 1000 1010 1010 1050 1060 2360
1 103 0 0 0 0 0 0 VOID
2 201 0 VOID VOID VOID VOID VOID VOID

3 301 2000 2020 VOID 2020 1500 VOID 1500
3 302 0 0 VOID VOID 0 VOID VOID

We have now nearly all ingredients to calculate marginal tax rates on
individual level, based on disposable income on household level
(yem_bkup, yem_unit, ils_dispy_unit). Still missing is standard
disposable income, which may simply be taken from a standard run
of the tax-benefit system or – maybe more convenient – calculated
by another loop.
The examples hopefully demonstrated that the storing mechanisms
provided by Store allow for output that can be efficiently analysed
respectively further processed with statistic tools. However, to
properly apply them we need to clarify some details. The following
exemplary overview of the variables/incomelists generated by Store
on the one hand summarises what was explained in the text above
and on the other hand allows elaborating these details.
Variables/incomelists/constants generated by Store

postfix=bkup postloop=turn
(Loop with 2 iterations)

postloop=unit
(UnitLoop with max. 2 iterations)

variables incomelists variables incomelists variables incomelists constants

var=yem yem_bkup
yem_turn1
yem_turn2
yem_turn

yem_unit1
yem_unit2 yem_unit

il=il_wkinc1 yem_bkup
yse_bkup il_wkinc_bkup2

yem_turn1
yem_turn2
yem_turn
yse_turn1
yse_turn2
yse_turn

il_wkinc_turn13

il_wkinc_turn23

il_wkinc_turn3

yem_unit1
yem_unit2
yse_unit1
yse_unit2

il_wkinc_unit14

il_wkinc_unit24 il_wkinc_unit

1 il_wkinc = yem + yse

2 il_wkinc_bkup = yem_bkup + yse_bkup

3 il_wkinc_turn1 = yem_turn1 + yse_turn1; il_wkinc_turn2 = yem_turn2 + yse_turn2;
il_wkinc_turn = yem_turn + yse_turn

4 il_wkinc_unit1 = yem_unit1 + yse_unit1; il_wkinc_unit2 = yem_unit2 + yse_unit2

While most of the overview should be self-explaining, we need to
clarify why yem_unit and il_wkinc_unit are constants. To do so recall
the construction of yem_unit described above and consider the fact
that monetary variables (and incomelists) are assessed on
assessment unit level. However, due to its construction yem_unit
cannot be assessed on e.g. household level. For the first household
it would than amount to 1818+1010+VOID which does not make any
sense. That means the constant-status on the one hand tries to
avoid mistakes in this context (but cannot rule them out) and on the
other hand highlights the specific contruction. In principle the same is
true for incomelists (il_wkinc_unit respectively ils_dispy_unit in the
example above). They are generated following the same mechanism
described above for yem_unit, i.e. set in each iteration to the value of
the currently eligible unit. For the same reasons why yem_unit is a
constant rather than a monetary variable il_wkinc_unit and
ils_dispy_unit are constant rather than incomelists. A convenient
side effect of the constant-status is that a level change via
parameters level/var_level/il_level does not generate a (further)
inconsistency.
Finally note that Restore cannot refer to a Store applying the
parameter post_loop to refer to a unit loop, as this would not be very
helpful but potentially most confusing.

[1] More precisely, if the unit is bigger than individual, the variable is set for the currently
eligible unit, namely to respective value for the head and to zero for non-heads (opposed to
staying undefined for persons within not eligible units).

The special function ChangeParam
The function ChangeParam allows for changing the values of
parameters of other functions. Of course usually one would not use a
function for this purpose, but change the parameters directly. There
are however some cases where using ChangeParam instead makes
sense. An evident example is changing parameters from an add-on.
In fact, the usage of ChangeParam in add-ons is near to inevitable –
how else should parameters of the countries' parameter files be
changed from the add-on parameter file? Another case concerns
changing parameters from a reform policy without directly changing
base policy parameters. Though the reform could as well be
implemented in the respective policy sheets (still transparent by
using a reform system), in some cases it may be more transparent to
summarise the changes in an extra reform policy.
Each parameter change requires two parameters. Firstly, the
parameter to change needs to be specified by Param_Id, which
allows the indication of a unique identifier for the parameter.
Secondly, the new value for the parameter is indicated by the
parameter Param_NewVal. The value type of this parameter is
determined by the value type of the parameter it changes. That
means if the parameter to be changed indicates a yes/no parameter,
Param_NewVal also needs to be set either to yes or no.
ChangeParam is independent of the policy/function order defined by
the spine. It simply overwrites the former value of the parameter (at
read-time) and the program runs as if this value never existed. As a
consequence, the function can be located anywhere, without
changing its behaviour.
The optional parameter Dataset can be used to restrict the change to
specific datasets.
If any such parameter is used (several can be used within one
group), the change only takes place if one of them matches the
dataset of the concerned run.

The wildcards * and ? can be used, where * stands for any character
and ? stands for one arbitrary character (e.g.be_20 * _a ?).
Note that, while the EM2 executable allows for also using
ChangeParam to change switches of policies or functions, the EM3
executable provides the function ChangeSwitch for this task.
Also note that changing parameters at run-time (as it was possible
with reservations with the EM2 executable by using parameter
Param_CondVal) is not possible with the EM3 executable.

The special function ChangeSwitch
This function is only available with EM3.
The function ChangeSwitch allows for changing the switches of
policies or functions. Similar to the function ChangeParam,
ChangeSwitch is mainly used in add-ons. (In fact, with the EM2
executable ChangeParam is also used to change switches.)
Different to ChangeParam, ChangeSwitch allows for a Run_Cond,
which means, whether the switch-change is carried out or not, may
be dependent on run-time conditions.
Note that (in contrast to changing switches with the EM2 executable)
the original switch may be off. That means it is not necessary to use
toggle anymore.
Also see EUROMOD Functions – Identifiers and the placeholders
=cc= and =sys=.

The special function CumulativeSum
The function CumulativeSum calculates the cumulative sum of a
given variable over all observations. It can do so in different
specifications:

You can sum any existing variable or incomelist.
You can chose to separate, sort and base calculations on
individuals, households or any defined tax unit.
Sorting allows for unlimited nested variables or incomelists
(using group order).
The calculated sum can be weighted or unweighted, and
absolute or relative, with any combination of the two pairs.

Following is a simple example of how to sort according to disposable
income and sum the relative weights as a percentage. Households
are first ordered by disposable income and then get a value from 0 to
1 (the last gets 1).
Example1:

Policy Grp/No SL_demo Comment

DefVar on
cumRelWt 0 define the output variable

CumulativeSum on
SortingVar 1 ils_dispy sort households according to disposable income

SummingVar dwt cumulatively sum the weight

SummingAbsolute no sum the relative weight

OutputVar cumRelWt

TAX_UNIT household_sl

A more complex example is seen below. In this one, we try to
combine multiple functions to calculate the Gini coefficient.
Example2:

Policy Grp/No SL_demo Comment

Totals on
Varname_Sum $sum

Agg dwt calculate the total weight ($sum_dwt)

TAX_UNIT household_sl

DefVar on
cumRelWt 0 the cumulative relative weight

cumRelInc 0 the cumulative relative equivalised
disposable income

gini 0 the gini part that corresponds to this
household

CumulativeSum on

SortingVar 1 eq_dispy sort households according to equivalised
disposable income

SummingVar dwt cumulatively sum the weight

SummingAbsolute no as a relative value

OutputVar cumRelWt

TAX_UNIT household_sl

CumulativeSum on

SortingVar 1 eq_dispy sort households according to equivalised
disposable income

SummingVar eq_dispy cumulatively sum the equivalised
disposable income

SummingAbsolute no as a relative value

SummingWeighted yes weighted

OutputVar cumRelInc

TAX_UNIT household_sl

ArithOp on

Formula (dwt/$sum_dwt) * (cumRelWt -
cumRelInc) * 2 the gini formula calculation

Output_Var gini

TAX_UNIT household_sl

Totals on
Varname_Sum $sum

Agg gini calculate the total gini ($sum_gini)

TAX_UNIT household_sl

The special function Totals
Totals allows for the calculation of aggregates (i.e. sums, means,
etc.) of variables or incomelists over the whole population
(represented by the dataset) or a selected subgroup. The function
does not aim to provide a statistical package. Rather, the aggregates
are intended to serve the calculations, as illustrated by example 1. It
demonstrates an increase in Simpleland’s child benefit, which is
financed by a respective raise in income tax. Budget neutrality is
achieved by gradually increasing income tax until the higher
expenses for the child benefit are covered, which is implemented by
means of a loop and Totals to check whether the budget is already
balanced.
Example 1: to be revised (use of ChangeParam with old identifiers)

Policy SL_demo Comment

Loop on loop function could be placed wherever desired
loopid budgneut

first_pol sic_sl

last_pol cb_reform_sl assumes that the present policy is called cb_reform_sl

breakcond {$totnew_ils_dispy<$totold_ils_dispy} exit condition: tax increase covers raised expenditure

Totals on compute total disposable income before the reform
run_cond {loopcount_budgneut=1}

varname_sum $totold

agg_il ils_dispy

TAX_UNIT individual_sl

Totals on compute total disp. inc. after each increase of the tax
rate

varname_sum $totnew

agg_il ils_dispy

TAX_UNIT individual_sl

ChangeParam on
param1_id sben_cb_sl_#5 assuming the parameter is placed in row 5

param1_condval 500#m increase child benefit amount (in the 2nd iteration)

param2_id it_sl_#6 assuming the parameter is placed in row 6

param2_condval 0.2+loopcount_budgneut*0.1% increasing the tax rate by 0.1% in each loop

Note that variables generated by Totals can be used as any "real"
variables. They take the same value for all persons in the sample,
even if the aggregate is built for a sub-sample.

The special functions DropUnit and KeepUnit
DropUnit and KeepUnit allow for dropping individuals, families or
whole households with certain characteristics from the calculations.
For DropUnit the parameter drop_cond indicates a condition
determining who is to be dropped, while for KeepUnit the parameter
keep_cond describes who is to be kept, i.e. those who do not fulfil
the condition are dropped. The following examples show some
applications.
Example 1:

Policy SL_demo Comment

DropUnit on
drop_cond {dag<15} drop all children younger than 15

TAX_UNIT individual_sl

Example 2:
Policy SL_demo Comment

DropUnit on
drop_cond {poa>0} all households receiving pension are dropped

TAX_UNIT household_sl

Example 3:
Policy SL_demo Comment

KeepUnit on
keep_cond {yem>0} only keep couples where both partners have

keep_cond_who all positive employment income

TAX_UNIT couple_sl

Example 4:
Policy Grp/No SL_demo Comment

KeepUnit on

keep_cond {il_earns>0}#1 & {il_pension=0}#1 &
{dag>14} & {dag<66}

keep household if there is at least
one person

#_level 1 individual_sl with positive earnings, not
receiving pensions

keep_cond_who one and aged between 15 and 65

TAX_UNIT household_sl

In example 1 all children younger than 15 are dropped. Example 2
drops whole households (TAX_UNIT=household_sl), namely those in
receipt of pension. In example 3 only singles with positive

employment income as well as couples where both partners
(keep_cond_who=all) have positive employment income are kept.
Note that only the couple (single) is kept, but not their children or
other relatives. Finally, example 4 shows a bit more complex use and
illustrates the application of different levels of assessment. The keep
condition defines persons aged between 15 and 65, who have
positive earnings and do not receive pensions. As a default (and as
usual) the incomelists il_earns and il_pension would be assessed on
TAX_UNIT level, therefore it is necessary to use the level parameter
to only take individual incomes into account. This is not necessary
for the personal variable dag, which is anyway (also as usual)
assessed on individual level. The parameter keep_cond_who tells
that at least one person must fulfil the condition for the household to
be kept (it could in fact be omitted as one is the default and is only
there to make it explicit).
Usually the dropping of units will take place at the very beginning of
the spine, i.e. before the respective tax-benefit calculations.
However, in principle it can be done anytime, as the "time" of
dropping the units depends on when the function appears in the
policy/module order. Consequently all assessment units built so far
are deleted, as the program cannot rely that the persons forming
these constellations still exist.

The special function IlArithOp
The following example illustrates a simple application of the function
IlArithOp:
Example 1:

Policy Grp/No SL_demo Comment

DefVar on define variables for prices (€/kg) and
quantities (kg/month)

pApples 2

pCoffee 20

pBread 3.5

qApples 15

qCoffee 0.5

qBread 10

DefIL on define price incomelist
Name il_prices

pApples +

pCoffee +

pBread +

DefIL on define quantity incomelist
Name il_quantities

qApples +

qCoffee +

qBread +

IlArithOp on calculate expenditure
Base_ILName il_prices

Base_Prefix p all vars in il_prices must start with 'p'

ILName 1 il_quantities

Prefix 1 q all vars in il_quantities must start with 'q'

Formula BASE_IL_COMPONENT *
IL_COMPONENT[il_quantities]

all vars of il_prices are multiplied by the
respective vars in il_quantities

Out_ILName il_expenditure incomelist holding the result variables

Out_Prefix x all vars in il_expenditure start with 'x'

In the example all variables of the incomelist 'il_prices' (defined by
parameter 'Base_ILName') are multiplied by the corresponding
variables in the incomelist 'il_quantities' (defined by parameter
'ILName' (group 1)), where corresponding means that they have the
same core-name, i.e. the name without the prefix defined by
parameters 'Base_Prefix' respectively 'Prefix' (group 1). The result is
written to newly generated variables starting with 'x', as defined by

parameter 'Out_Prefix', followed by the core-name.
Thus we get three new variables:
xApples = pApples * qApples
xCoffee = pCoffee * qCoffee
xBread = pBread * qBread
In addition a new incomelist 'il_expenditure' (defined by parameter
'Out_ILName') is created that holds the three new variables. [1]
In general the variables included in the calculations are specified by
the incomlist defined by parameter 'Base_ILName'.
The formula applied on these variables is defined by parameter
'Formula' and allows for three types of placeholders:

BASE_IL_COMPONENT refers to a variable in the incomelist
defined by parameter 'Base_ILName', for example 'pApples'
IL_COMPONENT[incomelist-identifier] refers to a variable in the
incomelist defined by parameter 'ILName'.
As the parameter is not unique, the identifier inside the brackets
indicates the name of the incomelist (e.g. [il_quantities]) or the
group-number (e.g. [1]).
The variable within the incomelist corresponds to the variable in
the base-incomelist in the sense that they share the core-name,
i.e. the name without the corresponding prefix (parameters
'Base_Prefix'/'Prefix') and postfix (parameters
'Base_Postfix'/'Postfix'), for example 'qApples'.
OUT_IL_COMPONENT refers to a variable in the incomelist
defined by parameter 'Out_ILName'.
The variable within the incomelist corresponds to the variable in
the base-incomelist in the same sense as described as above,
for example 'xApples'.
Using this placeholder requires the incomelist defined by
'Out_ILName' to exist before the IlArithOp is carried out (usually
it is generated by another IlArithOp).

The following rules complete the definition of the function IlArithOp:

The incomelists (defined by parameters
'Base_ILName'/'ILName'/'Out_ILName') are always used at the
"decomposed" level.
That means it is irrelevant whether they contain incomelists,
IlArithOp always looks at the final variables.
Any "factors" in the incomelist definition are ignored.
That means, for IlArithOp it is irrelevant if a variable is added
with '+' or '-' or even '-11'.
There must be either a prefix (parameters
'Base_Prefix'/'Prefix'/'Out_Prefix') or a postfix (parameters
'Base_Postfix'/'Postfix'/'Out_Postfix') or both.
The name of each variable in the incomelists must start with the
prefix (if defined) and end with the postfix (if defined).
The incomelists defined by parameter 'Base_ILName'
determines the variables that are generated/calculated.
Consequently, the incomelists defined by parameter 'ILName'
must contain at least the corresponding variables. (Base-IL
contains variable 'BasePrefix_VarName' -> IL must contain
variable 'Prefix_VarName').
It does however not matter if the incomelist contains additional
variables.
If the incomelists defined by parameter 'Out_ILName' exists
before the IlArithOp is carried out, the above rule applies for the
out-incomelist.
If the incomelists defined by parameter 'Out_ILName' does not
exist before the IlArithOp is carried out, respective variables are
generated. These variables must not exist before.
In addition an incomelist named as defined by parameter
'Out_ILName' is created that holds the newly generated
variables.

IlArithOp does not have an TAX_UNIT parameter. That means
all calculations are carried out on the individual level (i.e.
aggregation must be taken into account elsewhere if
necessary).

The next example illustrates a more likely application of IlArithOp.
Example 2:

Policy Grp/No SL_demo Comment

DefConst on define VAT rates
$tco_vat_std 21% standard rate

$tco_vat_red1 12% reduced rate 1

$tco_vat_red2 6% reduced rate 2

DefIL on define incomelist containing all
expenditure variables

Name il_x_all

RegExp_Def x[0-9]+

RegExp_Factor +

DefIL on
define incomelist containing all
expenditure variables taxed with reduced
rate 1

Name il_x_vatred1

RegExp_Def x1[0-9]+

RegExp_Factor +

DefIL on
define incomelist containing all
expenditure variables taxed with reduced
rate 2

Name il_x_vatred2

RegExp_Def x2[0-9]+

RegExp_Factor +

DefIL on
define incomelist containing all
expenditure variables exempted from
VAT

Name il_x_vatexempt

RegExp_Def x3[0-9]+

RegExp_Factor +

IlArithOp on
initialise incomelist il_vatrate, which will
hold the appropriate rates for all
expenditure variables

Base_ILName il_x_all

Base_Prefix x all variables in 'il_x_all' must start with 'x'

Formula $tco_vat_std initialise new variables with standard rate
(to overwrite below, if necessary)

Out_ILName il_vatrate incomelist 'il_vatrate' will be generated, to
hold newly generated variables

Out_Prefix vatrate names of newly generated variables will
start with 'vatrate' (e.g. vatrate02111)
one such variable is generated for each
variable in 'il_x_all'

IlArithOp on overwrite rates in 'il_vatrate' for
expenditure taxed with reduced rate 1

Base_ILName il_x_vatred1

Base_Prefix x all variables in 'il_x_vatred1' must start with
'x'

Formula $tco_vat_red1 overwrite standard rate with reduced rate 1

Out_ILName il_vatrate
'il_vatrate' and its content already exists,
respective variables (as contained in
'il_x_vatred1') are overwritten

Out_Prefix vatrate

IlArithOp on overwrite rates in 'il_vatrate' for
expenditure taxed with reduced rate 2

Base_ILName il_x_vatred2

Base_Prefix x all variables in 'il_x_vatred2' must start with
'x'

Formula $tco_vat_red2 overwrite standard rate with reduced rate 2

Out_ILName il_vatrate

Out_Prefix vatrate

IlArithOp on overwrite rates in 'il_vatrate' for
expenditure exempted from VAT

Base_ILName il_x_vatexempt

Base_Prefix x all variables in 'il_x_vatexempt' must start
with 'x'

Formula 0 overwrite standard rate with zero

Out_ILName il_vatrate

Out_Prefix vatrate

IlArithOp on calculate VAT for all expenditure
variables

Base_ILName il_x_all

Base_Prefix x all variables in 'il_x_all' must start with 'x'

ILName 1 il_vatrate

Prefix 1 vatrate all variables in 'il_vatrate' must start with
'vatrate'

Formula
BASE_IL_COMPONENT *
IL_COMPONENT[il_vatrate] /
(1+IL_COMPONENT[il_vatrate])

calculate VAT from gros expenditure, e.g.
tva02111 = x02111 * vatrate02111 /
(1+vatrate02111)

Out_ILName il_tva 'il_tva' contains total VAT on all expenditure

Out_Prefix tva

[1]Of course the example is abstract in the sense that it is not really reasonable to define
quantities and prices as quasi constants.

The special function ILVarOp
ILVarOp allows for operations on the content, i.e. the variables of an
incomelist. The following examples show some applications of the
function, to illustrate its purposes.
Example 1:

Policy SL_demo Comment

ILVarOp on
operator_il il_earns all variables within the incomelist il_earns

operand 101% are increased by 1%

operation mul parameter could be skipped as 'mul' is default

sel_var all parameter could be skipped as 'all' is default

Example 2:
Policy SL_demo Comment

ILVarOp on
operator_il il_earns the variable with the highest value within the

operand 101% incomelist il_earns is increased by 1%

operation mul parameter could be skipped as ‘mul’ is default

sel_var max

In the examples variables of the incomelist il_earns are increased by
1%. While in the former example all variables of the incomelist are
increased (sel_var=all), in the latter only the "main" variable, i.e. the
variable with the highest value is increased (sel_var=max).
Assuming that il_earns consists of yem and yse this means that in
example 1 both employment income and self-employment income
are increased while in example 2 yem is increased if the respective
person’s employment income is higher then her/his self-employment
income, otherwise yse is increased. If yem and yse are equal, the
first (with respect to entries in the incomelist) is increased.[1] As not
hard to guess, ILVarOp can be applied this way in marginal tax rate
calculations. Note that ILVarOp does not provide the parameter
TAX_UNIT, that means it always operates on individual level. Also
note that ILVarOp operates on variable level, that means there is no
difference between il_abc=yem+yse+poa and il_def=yem+il_ghi,
where il_ghi=yse+poa. Finally, note that the parameter operation
could have been skipped in both examples as mul is default, as well

as parameter sel_var could have been skipped in example 1 as all is
default.
Example 3:

Policy SL_demo Comment

ILVarOp on
operator_il il_earns the value of the variable yot is added

operand yot to the smallest variable within il_earns

operation add

sel_var min

In example 3 the parameter operation is set to add instead of mul,
which means that the operand is added to all/special variables within
il_earns. In the example the variable yot (for other income) is added
to either yem or yse, dependent on which of the two is smaller.

[1] This may need reconsideration if it causes problems.

The special function RandSeed
RandSeed sets the starting point for generating a series of
pseudorandom numbers. In order to better understand how random
numbers work in EUROMOD, you need to have an understanding of
how random numbers work in computers in general.
Random numbers in computers are actually not random at all.
Windows (as well as other Operating Systems) have a long list of
pages with stored "random" numbers. The operating system keeps a
pointer and each time you ask for a random number it returns the
next in line, from the page it is currently reading. Changing the
"seed" essentially means moving the pointer to a specific page and
taking all the numbers there in order.
In practice, this means that if you set a specific "randseed" in the
beginning of a system, you can be sure that you will get the exact
same sequence of random numbers in every run. if you set the
randseed with the same parameter in each system, then you can be
sure that all systems get the same sequence of random numbers in
every run. If you set the randseed with the same parameter every
time before getting a random number, then you will always get the
same "random" number.
Few more things to keep in mind are:

Any series of numbers you get after a randseed should be more
or less equally distributed between 0 and 1. The more random
numbers you get after a single randseed, the better the
distribution. If you set the randseed with every random number
you ask for then there is no distribution at all – you always get
the same number.
Randseed will definitely need to be part of your solution if you
are using random numbers and want the results to be replicable
(i.e. if you need to get the same series of random numbers
every time)

If you set the same randseed and then give random numbers to
the same individuals with the same order, then they will have the
same random numbers across systems. If however the number
or order of individuals is changed, then there is no way to link
random numbers to individuals.

Example 1:
Policy SL_rand1 SL_rand2 Comment

RandSeed on on
Seed 42134 42134

ArithOp on on
formula rand rand

output_var stm01_s stm01_s

TAX_UNIT individual_sl individual_sl

In the example the variable stm01_s is filled for each individual with
a random number between 0 and 1 (both included). Assuming both
systems use the same data (i.e. the same number of individuals in
the same order), you can be sure that for each individual variable
stm01_s will have the same value in both systems. Note that, if
RandSeed would not be used, or if the Seed was different, the
program would produce different results for the systems sl_rand1
and sl_rand2.

The special function CallProgramme
CallProgramme allows for calling an external application. For
example, a statistic programme, like Stata, can be called at the end
of the spine to further process the output produced by EUROMOD.
Note that the function is limited to the Windows platform.[1]
Example 1 calls Microsoft Excel to open a certain workbook.
Example 1:

Policy SL_demo Comment

CallProgramme on
Programme Excel.exe

Argument &Output\SomeExcelWorkbook

RepByEMPath &

The parameter Programme defines the application to be called as
Microsoft Excel. The parameter Argument specifies an argument to
be passed to Excel: &Output\SomeExcelWorkbook, which is the
name and path of the workbook that Excel should open (ignoring the
& for a moment). The parameter RepByEMPath allows for using the
path of the current EUROMOD installation for the specification of the
parameter Argument. Assuming EUROMOD is installed at
C:\EuromodFiles\, the argument passed to Excel is in fact
"C:\EuromodFiles\Output\SomeExcelWorkbook".

[1] This restriction is necessary because a c++ programme has, apart from multithreading,
only one possibility to call another programme independently of the platform (the stdlib
function system). This approach, however, shows the usually unwanted behaviour to wait
with any further execution until the called programme has finished.

The special function DefInput
DefInput allows for inputting values for one or more EUROMOD
variables from a text file. The input file must be organised as a tab
delimited table.
The function offers two modes, which can be described as "look up
mode" and "input mode". The following examples are to illustrate
what this means, starting with the "input mode".
Example 1: input mode

Policy SL_demo Comment

DefInput on
Path c:\SomeFolder

File SomeInputFile.txt

RowMergeVar dgn

File SomeInputFile.txt:
dgn sin01_s sin02_s $SomeVar
0 4711 111 1234

1 1147 999 9876

Extract of Output:
idperson dgn sin01_s sin02_s $SomeVar
101 0 4711 111 1234

102 1 1147 999 9876

...

123401 0 4711 111 1234

This rather simple (and abstract) example should be self-explaining.
Note however, that the inputted variables must exist, i.e. be defined
in the variables file (sin01_s, sin02_s) or by a EUROMOD function,
e.g. DefVar ($SomeVar). Moreover, if the input file contains a
variable not known by EUROMOD an error message is issued. See
the next example for ignoring columns (and rows) in the input file.
With respect to error messages, note that all errors in context with
DefInput (e.g. file does not exist, etc.) stop the programme run (i.e.
are real errors and not just warnings). This is somewhat special as
usually EUROMOD, where possible, avoids run time errors and tries
to detect errors at read time. However, in the case of DefInput, for
reasons of efficiency (see the discussion of parameter

MultiSystemUse below), inputting of variable values, as well as the
reading of the input file, take place at run time in accordance to the
position of the function in the spine.
Example 2: input mode

Policy SL_demo Comment

DefInput on
Path c:\SomeFolder

File SomeInputFile.txt

RowMergeVar idperson

DefaultIfNoMatch 999999

IgnoreNRows 1

IgnoreNCols 1

File SomeInputFile.txt:
idperson sin01_s sin02_s $SomeVar
101 123 321 132

123401 789 987 798

Extract of Output:
idperson sin01_s sin02_s $SomeVar
101 123 321 132

102 999999 999999 999999

...

123401 789 987 798

This (again abstract) example illustrates the use of the parameters
IgnoreNRows and IgnoreNCols, which simply allow for ignoring
headers in the input file. More importantly, the example
demonstrates what happens if the input file does not contain a
"match" for a specific person. As illustrated a default value can be
indicated via the parameter DefaultIfNoMatch. If no such value is
available, the programme issues an error message, if it cannot
establish a match.
Also note that the function does not provide a TAX_UNIT parameter,
meaning that it tries to establish a match for each row (person) of the
EUROMOD input dataset. Nevertheless, it is possible to input
variables on household level, as the following example shows.
Example 3: input mode

Policy SL_demo Comment

DefInput on
Path c:\SomeFolder

File SomeInputFile.txt

RowMergeVar idhh

File SomeInputFile.txt:
idhh sin01_s sin02_s $SomeVar
1 123 321 132

2 789 987 798

...

Extract of Output:
idhh idperson sin01_s sin02_s $SomeVar
1 101 123 321 132

1 102 123 321 132

1 103 123 321 132

2 201 789 978 798

...

The example demonstrates that one row of the input file can serve
as input for several rows (persons) of the EUROMOD dataset. For
obvious reasons the opposite is not possible, i.e. if the input file
contains two rows with idhh set to 1, an error message is issued.
The next example demonstrates the "look up mode".
Example 4: look up mode

Policy SL_demo Comment

DefInput on
Path c:\SomeFolder

File SomeInputFile.txt

RowMergeVar drg

ColMergeVar dgn

InputVar sin01_s

IgnoreNRows 1

IgnoreNCols 1

File
SomeInputFile.txt
:

region
gender
0 1

1 10 11

2 20 21

3 30 31

Extract of Output:
idperson drg dgn sin01_s
101 1 0 10

201 1 1 11

301 2 0 20

401 3 1 31

...

In the "look up mode" only one EUROMOD variable is inputted, the
parameter InputVar (sin01_s in the example) describes which. The
(new) value of this variable is determined by the crossing point of a
certain row and column. The respective row is found by searching
the row in the input file whose header corresponds to the value of a
person’s variable defined by the parameter RowMergeVar (drg, i.e.
region, in the example). Accordingly the respective column is found
by searching the column in the input file whose header corresponds
to the value of a person’s variable defined by the parameter
ColMergeVar (dgn, i.e. gender, in the example).
Note the parameters IgnoreNRows and IgnoreNCols and, what’s
more, that drg respectively dgn are not named anywhere in the input
file, but solely indicated by the parameters RowMergeVar and
ColMergeVar. That means the programme expects the values of
these variables in the first (not ignored) row and column.
The following example shows the use of the parameter DoRanges.
Example 5: look up mode

Policy SL_demo Comment

DefInput on
Path c:\SomeFolder

File SomeInputFile.txt

RowMergeVar dag

ColMergeVar dgn

InputVar sin01_s

DoRanges yes

File SomeInputFile.txt:
age/gender 0 1

10 100 101

30 300 301

80 800 801

200 2000 2001

Extract of Output:
idperson drg dgn sin01_s
101 31 1 801

102 30 0 300

103 2 0 100

201 99 1 2001

...

If the parameter DoRanges is set to yes, the values of RowMergeVar
and ColMergeVar (in the case of "look up mode") in the input file are

interpreted as upper limit of a range. That means, in the example, for
all women aged up to 10 (dag<=10) sin01_s is set to 100. For all
women older than 10 and aged up to 30 (10<dag<=30) sin01_s is
set to 300, etc.[1] Note that, without the last range of 200, an error
message would be issued for all persons older than 80, as no range
applies and DefaultIfNoMatch is not defined.
The next parameter to discuss, MultiSystemUse, has no impact on
the behaviour of the function but only concerns efficiency. If it is set
to yes (the default), the input table is kept in memory until the
programme terminates. If set to no, this memory is released as soon
as the content is assigned to EUROMOD variables. In other words,
the memory for the input table is allocated once the function has its
turn in the spine and immediately released after. If there is only one
use of one system of the input file, the latter approach is of course
most efficient. If however several systems use the input file, reading
the file for each of them is probably quite inefficient. Setting
MultiSystemUse to no may however even make sense if more than
one system uses the input data, i.e. when the content of the file
changes between the different uses (the the is set to italics to
indicate that it is in fact not the same data). Finally note that using
the input file by several systems does not necessarily lead to the
same result, as the systems’ values of RowMergeVar and
ColMergeVar may differ.
The last example is a more extended use of the function and intends
to demonstrate how the three functions DefOuput, CallProgramme
and DefInput can be used together to allow an external programme
doing some work for EUROMOD.
Example 6:

Policy SL_demo Comment

DefOutput on
File InputForSomeProgramme.txt

var idhh

var idperson

il ils_origy

il ils_dispy

TAX_UNIT tu_individual_sl

CallProgramme on

Path c:\SomeFolder

Programme SomeProgramme.exe

Argument &Output\InputForSomeProgramme.txt

RepByEMPath &

Wait yes

DefInput on
Path &Output

File OutputFromSomeProgramme.txt

RepByEMPath &

RowMergeVar idperson

In the example, firstly (DefOutput) EUROMOD produces some
output, consisting of household and person id as well as original and
disposable income, and stores it in the file
InputForSomeProgramme.txt located in the EUROMOD output
folder. Secondly (CallProgramme), a programme called
SomeProgramme.exe located at c:\SomeFolder is called. The
programme is assumed to take its input file as first argument and
requiring exactly the output just produced by EUROMOD. Note the
parameter RepByEMPath, which allows for addressing the
EUROMOD output folder. EUROMOD waits (parameter Wait set to
yes) for the programme terminating its work. Whatever that may be
in general, anyhow the programme is assumed to store its output in
a file called OutputFromSomeProgramme.txt in the EUROMOD
output folder. Finally (DefInput) EUROMOD reads this file and does
whatever appropriate with its content.

[1] In technical terms the range mode is also applied on the column variable gender, but in
practical terms this does not matter (as the = in <= applies).

The special function Scale
The function Scale allows the user to scale monetary variables and
monetary parameters.
This function is only available with EM3.
Example 1:

Policy Grp/No SL_demo Comment

Scale on
FactorVariables 1.5

In the above example, all monetary variables will be multiplied by
1.5.
Example 2:

Policy Grp/No SL_demo Comment

Scale on
FactorVariables 2

FactorParameter 2

In example 2, all monetary variables, as well as all monetary
parameters will be multiplied by 2.

The special function AddHHMembers
This function is only available with EM3.
As the name suggests, the function AddHHMemembers allows
adding new members to households. To get an idea, let’s start with
an example:
Example 1:

Policy Grp/No SL_demo Comment

AddHHMembers on
Add_Who 1 Partner

PartnerCond 1 { dag = 30 } & { dgn = 1 } & { idpartner <= 0 }

dag 1 30

dgn 1 0

In this example, each household containing a person fulfilling the
condition, i.e. to be a 30 year old male without a partner, gets a new
female member, which is 30 years old and will be the partner of the
30 year old male.
There are in fact three modes of adding household members:

Modes of adding
These are determined by the parameter 'Add_Who', which can take
the values 'Partner', 'Child' or 'Other'.
Adding partners: As the example above illustrates, 'Add_Who =
Partner' requires a 'PartnerCond'. If this condition is fulfilled by any
(existing) household member, a new person is added to the
household.
The variable idPartner of the new person is (system-)set to the
idPerson of the "triggering" household member (i.e. the household
member fulfilling the condition). However, whether this is also true
vice-versa, i.e. whether the idPartner of the triggering person is set
to the idPerson of the new person, depends. If the triggering person
already has a partner, it keeps this partner. Note that this means that
(s)he has now a main partner (the old one) and a secondary partner
(the new one). The model may comment this by warnings: 'more

than one possible partner found …'. The example above avoids this
by the condition { idpartner <= 0 }.
Maybe this is obvious, but it may be worth mentioning, that more
than one person can be added to the household upon this
'Add_Who'. In fact the number of new persons corresponds to the
number of (existing) persons in the household, who fulfil the
condition.
How to further specify the new persons, except from couple issues,
i.e. determine their age, gender, etc., is explained under paragraph
'Characterising new persons and system-set variables'.
Adding children is in many aspects similar to adding partners, thus
we can concentrate on the differences. First, one needs to set
'Add_Who = Child' (instead of 'Partner') and use 'ParentCond'
(instead of 'PartnerCond').
This time, the triggering person becomes the parent of the new child.
That means, if the triggering person is female, the new child's
idMother is set to her idPerson. Then again, if the triggering person
is male, the new child's idFather is set to his idPerson.
It is tried (by default) to find a second parent for the child. That
means, if the first parent (the triggering person) has a partner
(defined by idPartner) and this partner does not have the same
gender as the first parent, the child's other parent-id (i.e. either
idMother or idFather) is set to this idPartner. One can avoid this
behaviour, i.e. generate "single parent children", by setting the
parameter 'IsPartnerParent' to 'no'.
Again the number of children added by this 'Add_Who' corresponds
to the number of (existing) persons in the household, who fulfil the
condition.
It is also probably necessary to further specify the new children,
otherwise they are zero year old girls, but this is explained under
paragraph 'Characterising new persons and system-set variables'.
Adding other persons: 'Add_Who = Other' allows to add other
persons to the household than partners and children. In this case
one needs to use the 'HHCond' (instead of the 'PartnerCond' or
'ParentCond'). As the name suggests this condition must be fulfilled

by the household and not by single persons. Thus there are no
triggering persons and the 'Add_Who' adds one person if the
condition is fulfilled and no person if not.
There is more about the concrete meaning of "the household must
fulfil the condition" under paragraph 'Taxunits', and more about
specifying the new person under paragraph 'Characterising new
persons and system-set variables'.

"Characterising" new persons and system-set variables
There are seven variables which are system-set: idHH, idPerson,
dwt, dct, idFather, idMother and idPartner. The last three depend on
the 'Add_Who' parameter as described above. Household-id (idHH),
weight (dwt) and country (dct) are copied from existing household
members (as there is no question about their value). The person-id
(idPerson) is just the next available id, i.e. max(idPerson) in
household plus one.
Any other variable is initially set to zero, but one can specify another
value as illustrated in the examples above and below. One can use
formulas for doing so, but it's probably good to know on which level
they operate – this is explained in more detail under paragraph
'Taxunits'.
Maybe not very relevant, but just to mention, one cannot initialise
variables that are not used anywhere else. For example, if one tries
to set stm12_s = 4711, but stm12_s is not used anywhere else, this
would lead to the error message '… variable stm12_s does not exist.'
Maybe a bit more relevant, but only for tricky cases: the programme
does not allow to "manually" initialise idHH, idPerson, dwt and dct. It
is however possible to do this for idPartner, idMother and idFather.

'Add_Who' groups
In fact one can add partners, children and other persons within the
same AddHHMembers function, because the parameter 'AddWho'
plus the appropriate condition parameter plus the parameters for

variable specification form groups. The following example, an
extension of the initial example, may illustrate this:
Example 2:

Policy Grp/No SL_demo Comment

AddHHMembers on
Add_Who 1 Partner

PartnerCond 1 { dag = 30 } & { dgn = 1 } & { idpartner <= 0 }

dag 1 30

Add_Who 2 Child

ParentCond 2 { dag = 30 } & { dgn = 1 } & { idpartner <= 0 }

dag 2 6

Now the 30 year old males do not only get 30 year old partners but
in addition 6 year old daughters.
In fact this example may be good for illustration but less for real
application, because one probably wants the new partners to be the
mothers of the new children. This would not be the case, because it
is rather important to note that any condition and formula refers to
the initial household. In the initial household the males do not have
partners, thus the children would only have a father. This can be
easily changed by just using two subsequent AddHHMembers
functions, where in the first the partners are added and in in the
second the children. A more meaningful application of groups may
be to add more than one child to a person.
Just a hint: it may be a good idea to take special care of correct
group-number-setting. The programme tries of course to detect
errors, but some may not be evident for a machine.

Taxunits
In the explanations above units of assessment were rather
imprecisely referred to as individual or household, and in principle
that is what is true for the function AddHHMembers - it does not use
specific taxunits, but two simple and not further specified taxunits,
one for individuals and one for households. An example may
illustrate the consequences. Let’s assume we want to add an au-pair
to each household that has three children or more by this:
Example 3:

Policy Grp/No SL_demo Comment

AddHHMembers on
Add_Who 1 Other

HHCond 1 { nDepChildrenInTu >= 3 }

dag 1 19

The above has absolutely no effect, because no household has
children as the simple default household has no child definition and
as a consequence nobody is a child. The following will work for the
purpose described above, because the OECD household has a
definition of children (age<14).
Example 4:

Policy Grp/No SL_demo Comment

AddHHMembers on
Add_Who 1 Other

HHCond 1 { nDepChildrenInTu#2 >= 3 }

#_Level 2 tu_hh_oecd_co

dag 1 19

The motivation to implement it like this was to not overload the
function and outsource any complicated taxunit issues to other
functions, which can overtake preparation work for the
AddHHMembers function. Let's now fully specify the rules:
Rule 1: The conditions 'PartnerCond' and 'ParentCond' use a simple
individual taxunit. On the one hand, this means that some queries
may not work as intuitively assumed, on the other hand one can
change to any other taxunit with the required specifications.
In the example below each family as defined by tu_sben_family_sl
gets a new 0 year old girl (as default dag and dgn are set to 0),
provided the "family" has a female partner aged between 30 and 35
and the family does not yet have more than one child.
Example 5:

Policy Grp/No SL_demo Comment

AddHHMembers on
Add_Who 1 Child

ParentCond 1 {IsPartner#2} & {dgn=0} & {dag>=30} & {dag<=35} &
{nDepChildrenInTu#2<=1}

#_Level 2 tu_sben_family_sl

Rule 2: The condition 'HHCond' and the formulas for initialising
variables use a simple household taxunit[1]. As the au-pair example
above illustrates, this still allows changing to another household
taxunit which provides the required specifications. It is however not
possible to change to smaller units (this is the rule for the '#_Level'
parameter, which does not allow changing to smaller units than the
default unit). If necessary, one can use other functions and features
to prepare for the AddHHMembers function.

Memo of points to take care of
This memo may help to remember the important and/or not
immediately intuitive points.

Parameters 'ParentCond' and 'PartnerCond' use a simple
individual taxunit. One can change to any other taxunit using
parameter '#_level'. Queries may require usage with care.
Parameter 'HHCond' and formulas for initialising variables use a
simple household taxunit. One can only change to other
household taxunits using parameter '#_level'. More complicated
taxunit operation may require preparation by using other
functions.
All conditions and formulas refer to the original household,
before adding any new person (where original means at the time
before the function is carried out).
Variables idHH, idPerson, dwt and dct are system-set.
If parameter 'Add_who = Partner', the following holds:
idPartner of new person = idPerson of person fulfilling
'PartnerCond'
idPartner of fulfilling person = idPerson of new person, if
idPartner <= 0
If parameter 'Add_who = Child', the following holds:
idMother of new child = idPerson of person fulfilling
'ParentCond' if she is female
idFather of new child = idPerson of person fulfilling 'ParentCond'

if he is male
If parameter 'IsPartnerParent = yes' (default) the not yet set
parent-id (idMother/idFather) is set to the idPartner of the
person fulfilling 'ParentCond', provided idPartner > 0 and the
gender of the partner is different from the first parent.
Take care of setting group-numbers appropriately.

A final note, which is actually more or less only a technical detail, but
maybe worth knowing. Using the function AddHHMembers will
usually prevent full parallel runs. This is visible in the run-log, which
does not show percentages but names of functions. Apart from that
the run may be slightly slower. The only way to allow for full parallel
run is to use the function either at the very beginning of the spine or
immediately before the output policy.
[1] The unit just contains all HH-members, with the first being the head. There are no other
specifications.

The special function Break
The function Break allows the user to break the run at any point
inside the spine. This function is only intended to be used during the
development stage of a system to help the developer locate and fix
bugs in such system. It is not intended to be included in published
models.
This function is only available with EM3.
Example 1:

Policy Grp/No SL_demo Comment

Break on

In the above example the execution will immediately stop once the
Break function is reached, and EUROMOD will produce an output
file (taking the name from the first DefOutput to be found after the
Break function, which will typically be the default output function) that
contains ALL variables and incomelists available at the time. Note
that outputting incomelists will very likely lead to issuing warnings "...
use of not initialised variable ...", referring to variables that are
included in the incomelists, but only generated after the break.
A more controlled behaviour is shown in the next example:
Example 2:

Policy Grp/No SL_demo Comment

Break on
ProduceOutput yes

OutputFileName C:\MyFiles\debugging.txt

ProduceTUinfo yes

In example 2, the execution will immediately stop once the Break
function is reached, as before, but EUROMOD will this time produce
an output file in the specified location and name. If only the filename
is specified, then it will be generated in the default output folder
(same as the DefOutput works). This file will not only contain
variables and incomelists, but also all at the time available TU info.

EUROMOD add-ons and the special
functions AddOn_Applic, AddOn_Pol,
AddOn_Func and AddOnPar
Add-on features are EUROMOD extended functionalities, which are
not part of the standard tax-benefit calculations. The main reasons
for keeping add-ons separate from the basic model is to hold the
latter as clear and straightforward as possible. Typical examples for
add-ons are the calculation of marginal/average tax-rates; the
calculation of disposable income by different labour supply options;
templates for optimisation exercises, e.g. choices between different
policy options; templates for budget neutral reforms; etc. While these
examples are usually implemented for all or at least for a couple of
countries, add-on features can also be used to store reform
scenarios separately.
Technically add-on implementations look like country
implementations, i.e. they consist of systems, policies, functions, etc.
There are some minor differences and particularities:

Add-ons are loaded in the user interface via the ribbon Add-
Ons.
The functions AddOn_Applic, AddOn_Pol, AddOn_Func and
AddOnPar can only be used with add-ons, where the existence
of AddOn_Applic is compulsory (see below).
Add-ons make extensive use of "identifiers"[1]: see examples
below and EUROMOD Functions – Identifiers and the
placeholders =cc= and =sys=.
Add-ons make extensive use of the placeholders =cc= and
=sys=[1]: see examples below and EUROMOD Functions –
Identifiers and the placeholders =cc= and =sys=.
Add-on parameters are freely editable. That means for example
that, other than for countries, on the one hand any text can be

indicated for taxunit parameters, on the other hand there is no
support in form of offering available taxunits. This is based on
the fact that add-ons use components (i.e., e.g. taxunits) which
are not defined in the add-on itself but can be defined in any
country. Thus the usual control and support would be technically
too complex.

Example
Example 1 aims to illustrate the concept of add-ons, by showing a
simple application.
Example 1: policy Definition_ex1

Policy Ex1 Ex1_MT
AddOn_Applic on on
Description Add-ons example 1 Add-ons example 1 for Malta

Sys *2010* MT_2010

Sys sl_demo n/a

SysNA MT* n/a

AddOn_Pol on on
Pol_Name bchot_ex1 bchot_ex1

Insert_Before_Pol output_std_=cc= output_std_mt

AddOn_Func on on
Id_Func 2b3e7a88-0081-4500-bc13-e902923af3e1 5674e105-6f33-433d-8c8b-db591b53c4f9

Insert_After_Func output_std_=cc=_#1 2AB9FACE-08AD-492F-BC49-47CF3ADAB6EC

AddOn_Par on on
Insert_Func output_std_=cc=_#1 2AB9FACE-08AD-492F-BC49-47CF3ADAB6EC

Var bchot_s bchot_s

IL ils_dispy_ext ils_dispy_ext

Example 1: policy Implementation_ex1
Policy Ex1 Ex1_MT
DefOutput on on
File bchot_=cc=.txt bchot_MT.txt

Var idhh idhh

VarGroup bchot* bchot*

ILGroup il_bchot* il_bchot*

TAX_UNIT tu_bchot tu_bchot

Example 1: policy bchot_ex1
Policy Ex1 Ex1_MT
DefVar on on
bchot_nCh_upTo6 0 0

bchot_nCh_6plus 0 0

bchot_DayCare_Fee 0#d 0#d

...

DefTU on on
Name tu_bchot tu_bchot

Type SUBGROUP SUBGROUP

...

DefIL on on
Name ils_dispy_ext ils_dispy_ext

ils_dispy + +

bchot_s + +

DefIL on on
Name il_bchot_means il_bchot_means

...

...

...

ArithOp on on
who_must_be_elig

formula

output_var bchot_s bchot_s

TAX_UNIT tu_bchot tu_bchot

The example contains the implementation of an "other child benefit"
(bchot_s), which can be added to any 2010 tax-benefit systems
implemented in EUROMOD, as well as to Simpleland. It uses three
policies for this purpose. The first, Definition_ex1, can be regarded
as the centrepiece as it controls the rest. The second,
Implementation_ex1, contains add-on specific implementations and
the third, bchot_ex1, implements the "other child benefit". The add-
on has two systems. The first, Ex1, can be applied on all countries
except Malta. The second, Ex1_MT, is especially designed for the
Maltese 2010 system and illustrates what's different if one knows the
country and system on which the add-on is applied. In the following
the "systems on which the add on is applied" will be referred to as
base systems for the sake of brevity.
The policy Definition_ex1 contains four functions. The first,
AddOn_Applic, specifies on which base systems the add-on systems
can be applied. The first Sys parameter allows for all 2010 systems
(more precise, system names containing "2010"), the second Sys
parameter allows for Simpleland’s sl_demo system. The SysNa

parameter (NA stands for not applicable) excludes any Maltese
systems (more precise, system names starting with "MT").
The second function, AddOn_Pol, defines that the policy bchot_ex1
is to be added to the base system, i.e. the policy implementing the
"other child benefit". This is accomplished by the parameter
Pol_Name, while the parameter Insert_Before_Pol specifies where
to integrate the policy. The child benefit inserted before the standard
output policy, which in the Maltese system Ex1_MT, can be simply
indicated as output_std_mt, while for the many countries systems,
Ex1, the placeholder =cc= (which is replaced by the respective
country’s acronym at run-time) needs to be used (see EUROMOD
Functions – Identifiers and the placeholders =cc= and =sys=).
The third function, AddOn_Func, defines that a special output
function is to be added to the base system, i.e. the one defined in the
policy Implementation_ex1. The parameter Id_Func accomplishes
this task by indicating the identifier of this function (see EUROMOD
Functions – Identifiers and the placeholders =cc= and =sys=). Note
that, though seemingly identifying the same function, the identifier is
not equal for the two systems Ex1 and Ex1_MT. The reason is that
identifiers are system specific and in the strict sense the two
identifiers do not refer to the same function, as its implementation
may be different for the two systems. The parameter
Insert_After_Func specifies where to integrate the function, which is
for both systems "after the function defining standard output".
However, the system Ex1 uses a symbolic identifier for this purpose
(see EUROMOD Functions – Identifiers and the placeholders =cc=
and =sys=), which is composed of the name of the policy where the
function is located, i.e. the standard output policy (output_std_=cc=),
and the order of the function, i.e. the function is supposed to be the
first (#1) in this policy. This is in fact not a unique identifier and
therefore somewhat vague, which must however be accepted if the
definition is to be valid for several base systems. Such uncertainty
can be avoided if the add-on system refers to a single base system,
therefore Ex1_MT uses the unique identifier of the standard output
function in the Maltese 2010 system.

The fourth function, AddOn_Par, adds the two main outputs of the
"other child benefit" implementation to standard output, i.e. the
benefit itself (Var = bchot_s) and an incomelist defining standard
disposable income extended by the benefit (IL = ils_dispy_ext). Note
that the parameter Insert_Func is set to the same values as the
parameter Insert_After_Func of the function AddOn_Func. Note as
well that it is important to insert the special output function after the
standard output function. Using the parameter Insert_Before_Func
instead of the parameter Insert_After_Func in principle would not
matter, as it is not important which output comes first. However the
insertion of the special output function would move the standard
output function from first order to second order, thus #1 would not
work anymore. Obviously this only matters for the system Ex1, which
uses a symbolic identifier, while the "real" identifier of Ex1_MT would
still work.
The policy Implementation_ex1 contains only one function, namely
the special output function referred to by the function AddOn_Func,
outputting some intermediate variables and incomelists produced by
the "other child benefit" policy. Note, that this policy is in fact
dispensable, as the function could as well be defined in the policy
Definition_ex1. In fact the policy just serves illustration purposes as
with more complex add-ons it might be more transparent to separate
definition from implementation. More importantly, note that there
needs to be at least one policy which is not integrated into the base
system. This policy needs to contain the AddOn_X functions and
(usually) all functions integrated via AddOn_Func, as, if the latter
were defined in an integrated policy, these functions would run twice
(which may occasionally make sense).
Finally the policy bchot_ex1 contains the implementation of the
"other child benefit".

Generation and storage of add-ons
Add-ons are stored in xml files, which are named like the add-on’s
short name. SeeWorking with EUROMOD - Changing countries'
names and short names for more information on countries' and add-

ons' short names and EUROMOD Installation and Architecture for
matters of storage.
Add-ons can be generated by using the Save As functionality (see
Working with EUROMOD - Saving, saving as and auto-saving).

Application of add-ons
For information on how to apply an add-on, i.e. merge it with a base
system and run the result, see the paragraph Running add-on
systems in Working with EUROMOD - Running EUROMOD.

[1]Though identifiers and the placeholders =cc= and =sys= are not add-on specific. The
former are also used by other functions (e.g. the loop functions and ChangeParam). The
latter can be used universally in principle

Summary of functions and their parameters
This section provides a full (but brief) description of the parameters
of EUROMOD functions. For a descriptive explanation with many
examples see EUROMOD Functions - Description of functions and
their parameters.

Summary of parameters for function ArithOp
A simple calculator, allowing for the most common arithmetical
operations.

Function Specific Parameters
Name Type Compulsory Unique Description

Formula formula yes yes Formula for calculating the function's result.

Common Parameters
Name Type Group Compulsory Unique Default Mutually

exclusive with Description

Output_Var variable
yes (if

Output_Add_Var
is not defined)

yes Output_Add_Var

Variable for storing
the result of the

function. Result of
function overwrites
the current value of

the variable.

Output_Add_Var variable
yes (if

Output_Var is
not defined)

yes Output_Var

Variable for storing
the result of the

function. Result of
function is added to
the current value of

the variable.

Result_Var variable no yes

Variable for storing
the result of the

function. Result of
function overwrites
the current value of

the variable.

TAX_UNIT taxunit yes yes
Assessment unit for

function's
calculations.

Who_Must_Be_Elig categorical no yes nobody Function's
calculations are
carried out if ...

- one (one_member):
... one member of the

assessment unit is
"eligible"

- one_adult: ... one
adult member of the
assessment unit is

"eligible"
- all (all_members;

taxunit): ... all
members of the

assessment unit are
"eligible"

- all_adults: ... all
adult members of the

assessment unit are
eligible

- nobody: ... always
"eligible" is

determined by the
variable indicated by
parameter Elig_Var

Elig_Var variable no yes sel_s

Variable indicating
whether a person is

"eligible" (see
parameter

Who_Must_Be_Elig):
- zero: person is not

eligible
- non zero: person is

eligible

Run_Cond condition no yes

Function is only
carried out if the

condition is fulfilled.
The parameter is
intended to be a

conditional switch.
Thus the condition

must not be
individual or

household based, but
refer to a specific
processing state or

other global
condition.

LowLim formula no yes -999999999999.99
Replaces result of
function if result is

smaller.

UpLim formula no yes 999999999999.99
Replaces result of
function if result is

higher.

Threshold formula no yes -999999999999.99

Replaces result of
function if result is

smaller: if lower limit
is not defined by

zero, otherwise by
lower limit.

Round_to amount no yes

Result is rounded to
nearest whole number
if set to 1, to nearest

number with 1
decimal if set to 0.1,
to nearest 10 if set to

10, etc.

Round_Up amount no yes

Result is rounded up
to nearest whole

number if set to 1, to
nearest number with
1 decimal if set to

0.1, to nearest 10 if
set to 10, etc.

Round_Down amount no yes Result is rounded
down to nearest

whole number if set

to 1, to nearest
number with 1

decimal if set to 0.1,
to nearest 10 if set to

10, etc.

#_LowLim formula no

no (but
group
must

differ)

-999999999999.99

Footnote parameter
for the further

specification of an
operand: replaces

operand if operand is
smaller.

#_UpLim formula no

no (but
group
must

differ)

999999999999.99

Footnote parameter
for the further

specification of an
operand: replaces

operand if operand is
higher.

#_LimPriority categorical no

no (but
group
must

differ)

upper

Footnote parameter
for the further

specification of an
operand:

Possible values:
If upper limit

(#_UpLim) is smaller
than lower limit
(#_LowLim) ...

- upper: ... upper limit
dominates;

- lower: ... lower limit
dominates;

- not defined: ... a
warning is issued.

#_Amount amount no

no (but
group
must

differ)

Footnote parameter
for the further

specification of an
operand: indicates the
numeric value of an

operand.

#_Level taxunit no

no (but
group
must

differ)

Footnote parameter
for the further

specification of an
operand: indicates an

alternative
assessment unit for an

operand.

#_AgeMin amount no

no (but
group
must

differ)

-999999999999
Parameter of several

queries (e.g.
nDepChildrenInTu).

#_AgeMax amount no

no (but
group
must

differ)

999999999999
Parameter of several

queries (e.g.
nDepChildrenInTu).

#_DataBasename text no

no (but
group
must

differ)

Parameter of query
IsUsedDatabase.

#_N amount no no (but
group

Parameter of query
IsNtoMchild.

must
differ)

#_M amount no

no (but
group
must

differ)

Parameter of query
IsNtoMchild.

#_Val variable or
incomelist no

no (but
group
must

differ)

Parameter of query
HasMaxValInTu.

#_Income variable or
incomelist no

no (but
group
must

differ)

Parameter of several
queries (e.g.

GetPartnerIncome).

#_Info variable no

no (but
group
must

differ)

Parameter of several
queries (e.g.

GetPartnerInfo).

#_Unique yes/no no

no (but
group
must

differ)

Parameter of query
HasMaxValInTu.

#_Adults_Only yes/no no

no (but
group
must

differ)

Parameter of query
HasMaxValInTu.

Summary of parameters for function Elig
Is most frequently used for determining the eligibility for receiving
benefits. However, it also allows for determining the liability for
paying taxes, as well as evaluating other conditions.

Function Specific Parameters
Name Type Compulsory Unique Description

Elig_Cond condition yes yes A combination of conditions: output variable is set to 1 if they are fulfilled, else
to 0.

Common Parameters

Name Type Group Compulsory Unique Default
Mutually
exclusive
with

Description

Output_Var variable no yes sel_s

Variable for storing the result
of the function. Result of
function overwrites the

current value of the variable.

Result_Var variable no yes

Variable for storing the result
of the function. Result of
function overwrites the

current value of the variable.
Note that Result_Var

provides an additional
variable to store the result.

That means, even if it is used
and the parameter

Output_Var is not indicated,
sel_s will be set to the result

of the function.

TAX_UNIT taxunit yes yes Assessment unit for
function's calculations.

Who_Must_Be_Elig categorical no yes nobody Function's calculations are
carried out if ...

- one (one_member): ... one
member of the assessment

unit is "eligible"
- one_adult: ... one adult

member of the assessment
unit is "eligible"

- all (all_members; taxunit):
... all members of the

assessment unit are "eligible"
- all_adults: ... all adult

members of the assessment
unit are eligible

- nobody: ... always
"eligible" is determined by

the variable indicated by
parameter Elig_Var

Elig_Var variable no yes sel_s

Variable indicating whether a
person is "eligible" (see

parameter
Who_Must_Be_Elig):

- zero: person is not eligible
- non zero: person is eligible

Run_Cond condition no yes

Function is only carried out if
the condition is fulfilled. The
parameter is intended to be a
conditional switch. Thus the

condition must not be
individual or household

based, but refer to a specific
processing state or other

global condition.

#_LowLim formula no

no (but
group
must

differ)

-999999999999.99

Footnote parameter for the
further specification of an

operand: replaces operand if
operand is smaller.

#_UpLim formula no

no (but
group
must

differ)

999999999999.99

Footnote parameter for the
further specification of an

operand: replaces operand if
operand is higher.

#_LimPriority categorical no

no (but
group
must

differ)

upper

Footnote parameter for the
further specification of an

operand:
Possible values:

If upper limit (#_UpLim) is
smaller than lower limit

(#_LowLim) ...
- upper: ... upper limit

dominates;
- lower: ... lower limit

dominates;
- not defined: ... a warning is

issued.

#_Amount amount no

no (but
group
must

differ)

Footnote parameter for the
further specification of an

operand: indicates the
numeric value of an operand.

#_Level taxunit no

no (but
group
must

differ)

Footnote parameter for the
further specification of an

operand: indicates an
alternative assessment unit

for an operand.

#_AgeMin amount no

no (but
group
must

differ)

-999999999999 Parameter of several queries
(e.g. nDepChildrenInTu).

#_AgeMax amount no

no (but
group
must

differ)

999999999999 Parameter of several queries
(e.g. nDepChildrenInTu).

#_DataBasename text no no (but
group

Parameter of query
IsUsedDatabase.

must
differ)

#_N amount no

no (but
group
must

differ)

Parameter of query
IsNtoMchild.

#_M amount no

no (but
group
must

differ)

Parameter of query
IsNtoMchild.

#_Val variable or
incomelist no

no (but
group
must

differ)

Parameter of query
HasMaxValInTu.

#_Income variable or
incomelist no

no (but
group
must

differ)

Parameter of several queries
(e.g. GetPartnerIncome).

#_Info variable no

no (but
group
must

differ)

Parameter of several queries
(e.g. GetPartnerInfo).

#_Unique yes/no no

no (but
group
must

differ)

Parameter of query
HasMaxValInTu.

#_Adults_Only yes/no no

no (but
group
must

differ)

Parameter of query
HasMaxValInTu.

Summary of parameters for function BenCalc
Allows for modelling a wide range of policy instruments, in particular
benefits.
The result is calculated as a sum of "components", where the value of
a component is only added if a certain condition is fulfilled by at least
one member of the assessment unit.
The following stylised formulas illustrate the approach:
result = Sum (Comp_perTU if Comp_Cond = true)
result = Sum (Comp_perElig * nElig if Comp_Cond = true)

Function Specific Parameters
Name Type Group Compulsory Unique Default Mutually

exclusive with Description

Base formula no yes

Base amount that can
be used with
parameters

compX_perTU /
compX_perElig,

referenced as $Base.

Comp_Cond condition COMPONENT within group within
group

Condition that must be
fulfilled to add the

component
(comp_perTU /

comp_perElig) to the
function's result.

Syntax rules as for
parameter Elig_Cond
of function Elig apply.

Comp_perTU formula COMPONENT

within group
(if

Comp_perElig
is not defined)

within
group

Comp_perElig,
within group

Formula to calculate
one component of the
function's result. The

result of the formula is
added once to the
function's result

(regardless whether
one or more members
of the assessment unit
fulfil the components

condition
(Comp_Cond)).

Syntax rules as for
parameter Formula of

function ArithOp
apply.

Comp_perElig formula COMPONENT within group
(if

Comp_perTU
is not defined)

within
group

Comp_perTU,
within group

Formula to calculate
one component of the
function's result. The

result of the formula is
added to the function's

result once for each
member of the
assessment unit

fulfiling the
components condition

(Comp_Cond).
Syntax rules as for

parameter Formula of
function ArithOp

apply.

Comp_LowLim formula COMPONENT within group within
group -999999999999.99

Replaces component
if component is

smaller.

Comp_UpLim formula COMPONENT within group within
group 999999999999.99

Replaces component
if component is

higher.

Withdraw_Base formula no yes

Withdraw_Base *
Withdraw_Rate is

deducted from
function's

(preliminary) result.
Note that if withdraw
parameters are used,
the function's result
cannot be negative.

Withdraw_Rate formula no yes 0

Withdraw_Base *
Withdraw_Rate is

deducted from
function's

(preliminary) result.
Note that if withdraw
parameters are used,
the function's result
cannot be negative.

Withdraw_Start formula no yes 0
Level of

Withdraw_Base where
withdrawal starts.

Withdraw_End formula no yes 999999999999.99

Level of
Withdraw_Base where
withdrawal ends (i.e.

benefit is totally
withdrawn).
Note that the

parameter is ignored if
Withdraw_Rate is

indicated.

Common Parameters
Name Type Group Compulsory Unique Default Mutually

exclusive with Description

Output_Var variable
yes (if

Output_Add_Var
is not defined)

yes Output_Add_Var

Variable for storing
the result of the

function. Result of
function overwrites
the current value of

the variable.

Output_Add_Var variable yes (if
Output_Var is
not defined)

yes Output_Var Variable for storing
the result of the

function. Result of
function is added to
the current value of

the variable.

Result_Var variable no yes

Variable for storing
the result of the

function. Result of
function overwrites
the current value of

the variable.

TAX_UNIT taxunit yes yes
Assessment unit for

function's
calculations.

Who_Must_Be_Elig categorical no yes nobody

Function's
calculations are
carried out if ...

- one (one_member):
... one member of the

assessment unit is
"eligible"

- one_adult: ... one
adult member of the
assessment unit is

"eligible"
- all (all_members;

taxunit): ... all
members of the

assessment unit are
"eligible"

- all_adults: ... all
adult members of the
assessment unit are

eligible
- nobody: ... always

"eligible" is
determined by the

variable indicated by
parameter Elig_Var

Elig_Var variable no yes sel_s

Variable indicating
whether a person is

"eligible" (see
parameter

Who_Must_Be_Elig):
- zero: person is not

eligible
- non zero: person is

eligible

Run_Cond condition no yes Function is only
carried out if the

condition is fulfilled.
The parameter is
intended to be a

conditional switch.
Thus the condition

must not be
individual or

household based, but
refer to a specific

processing state or
other global
condition.

LowLim formula no yes -999999999999.99
Replaces result of
function if result is

smaller.

UpLim formula no yes 999999999999.99
Replaces result of
function if result is

higher.

Threshold formula no yes -999999999999.99

Replaces result of
function if result is

smaller: if lower limit
is not defined by

zero, otherwise by
lower limit.

Round_to amount no yes

Result is rounded to
nearest whole number
if set to 1, to nearest

number with 1
decimal if set to 0.1,
to nearest 10 if set to

10, etc.

Round_Up amount no yes

Result is rounded up
to nearest whole

number if set to 1, to
nearest number with
1 decimal if set to

0.1, to nearest 10 if
set to 10, etc.

Round_Down amount no yes

Result is rounded
down to nearest

whole number if set
to 1, to nearest
number with 1

decimal if set to 0.1,
to nearest 10 if set to

10, etc.

#_LowLim formula no

no (but
group
must

differ)

-999999999999.99

Footnote parameter
for the further

specification of an
operand: replaces

operand if operand is
smaller.

#_UpLim formula no

no (but
group
must

differ)

999999999999.99

Footnote parameter
for the further

specification of an
operand: replaces

operand if operand is
higher.

#_LimPriority categorical no no (but
group
must

differ)

upper Footnote parameter
for the further

specification of an
operand:

Possible values:
If upper limit

(#_UpLim) is smaller
than lower limit
(#_LowLim) ...

- upper: ... upper limit

dominates;
- lower: ... lower limit

dominates;
- not defined: ... a
warning is issued.

#_Amount amount no

no (but
group
must

differ)

Footnote parameter
for the further

specification of an
operand: indicates the
numeric value of an

operand.

#_Level taxunit no

no (but
group
must

differ)

Footnote parameter
for the further

specification of an
operand: indicates an

alternative
assessment unit for an

operand.

#_AgeMin amount no

no (but
group
must

differ)

-999999999999
Parameter of several

queries (e.g.
nDepChildrenInTu).

#_AgeMax amount no

no (but
group
must

differ)

999999999999
Parameter of several

queries (e.g.
nDepChildrenInTu).

#_DataBasename text no

no (but
group
must

differ)

Parameter of query
IsUsedDatabase.

#_N amount no

no (but
group
must

differ)

Parameter of query
IsNtoMchild.

#_M amount no

no (but
group
must

differ)

Parameter of query
IsNtoMchild.

#_Val variable or
incomelist no

no (but
group
must

differ)

Parameter of query
HasMaxValInTu.

#_Income variable or
incomelist no

no (but
group
must

differ)

Parameter of several
queries (e.g.

GetPartnerIncome).

#_Info variable no

no (but
group
must

differ)

Parameter of several
queries (e.g.

GetPartnerInfo).

#_Unique yes/no no

no (but
group
must

differ)

Parameter of query
HasMaxValInTu.

#_Adults_Only yes/no no

no (but
group
must

differ)

Parameter of query
HasMaxValInTu.

Summary of parameters for function
SchedCalc
Allows for the implementation of the most common (tax) schedules.

Function Specific Parameters
Name Type Group Compulsory Unique Default Mutually

exclusive with Description

Base formula yes yes Base income for the schedule.

Band_UpLim formula BAND no within
group Upper limit of band.

Band_LowLim formula BAND no within
group Lower limit of band.

Band_Rate formula BAND
within group (if
Band_Amount
is not defined)

within
group

Band_Amount,
within group Rate to apply on band.

Band_Amount formula BAND
within group (if
Band_Rate is
not defined)

within
group

Band_Rate,
within group Amount to add for band.

Do_Average_Rates yes/no no yes
If set to yes the rate of the highest

band reached by Base is applied on
the total amout of Base.

Quotient formula no yes

If defined Base is divided by the
quotient before the schedule is

applied. Afterwards the result is
multiplied by the quotient.

BaseThreshold formula no yes If Base is smaller result is set to zero.

Round_Base amount no yes

If defined Base is rounded to nearest
whole number; if set to 1, to nearest
number with 1 decimal; if set to 0.1,

to nearest 10 if set to 10, etc.

Simple_Prog yes/no no yes

If set to yes the same rate/amount is
applied on all income. The respective
rate/amount is the one of the highest

band the income falls into.

Common Parameters
Name Type Group Compulsory Unique Default Mutually

exclusive with Description

Output_Var variable
yes (if

Output_Add_Var
is not defined)

yes Output_Add_Var

Variable for storing
the result of the

function. Result of
function overwrites
the current value of

the variable.

Output_Add_Var variable yes (if
Output_Var is
not defined)

yes Output_Var Variable for storing
the result of the

function. Result of

function is added to
the current value of

the variable.

Result_Var variable no yes

Variable for storing
the result of the

function. Result of
function overwrites
the current value of

the variable.

TAX_UNIT taxunit yes yes
Assessment unit for

function's
calculations.

Who_Must_Be_Elig categorical no yes nobody

Function's
calculations are
carried out if ...

- one (one_member):
... one member of the

assessment unit is
"eligible"

- one_adult: ... one
adult member of the
assessment unit is

"eligible"
- all (all_members;

taxunit): ... all
members of the

assessment unit are
"eligible"

- all_adults: ... all
adult members of the
assessment unit are

eligible
- nobody: ... always

"eligible" is
determined by the

variable indicated by
parameter Elig_Var

Elig_Var variable no yes sel_s

Variable indicating
whether a person is

"eligible" (see
parameter

Who_Must_Be_Elig):
- zero: person is not

eligible
- non zero: person is

eligible

Run_Cond condition no yes

Function is only
carried out if the

condition is fulfilled.
The parameter is
intended to be a

conditional switch.
Thus the condition

must not be
individual or

household based, but
refer to a specific
processing state or

other global
condition.

LowLim formula no yes -999999999999.99 Replaces result of
function if result is

smaller.

UpLim formula no yes 999999999999.99
Replaces result of
function if result is

higher.

Threshold formula no yes -999999999999.99

Replaces result of
function if result is

smaller: if lower limit
is not defined by

zero, otherwise by
lower limit.

Round_to amount no yes

Result is rounded to
nearest whole number
if set to 1, to nearest

number with 1
decimal if set to 0.1,
to nearest 10 if set to

10, etc.

Round_Up amount no yes

Result is rounded up
to nearest whole

number if set to 1, to
nearest number with
1 decimal if set to

0.1, to nearest 10 if
set to 10, etc.

Round_Down amount no yes

Result is rounded
down to nearest

whole number if set
to 1, to nearest
number with 1

decimal if set to 0.1,
to nearest 10 if set to

10, etc.

#_LowLim formula no

no (but
group
must

differ)

-999999999999.99

Footnote parameter
for the further

specification of an
operand: replaces

operand if operand is
smaller.

#_UpLim formula no

no (but
group
must

differ)

999999999999.99

Footnote parameter
for the further

specification of an
operand: replaces

operand if operand is
higher.

#_LimPriority categorical no no (but
group
must

differ)

upper Footnote parameter
for the further

specification of an
operand:

Possible values:
If upper limit

(#_UpLim) is smaller
than lower limit
(#_LowLim) ...

- upper: ... upper limit
dominates;

- lower: ... lower limit
dominates;

- not defined: ... a
warning is issued.

#_Amount amount no

no (but
group
must

differ)

Footnote parameter
for the further

specification of an
operand: indicates the
numeric value of an

operand.

#_Level taxunit no

no (but
group
must

differ)

Footnote parameter
for the further

specification of an
operand: indicates an

alternative
assessment unit for an

operand.

#_AgeMin amount no

no (but
group
must

differ)

-999999999999
Parameter of several

queries (e.g.
nDepChildrenInTu).

#_AgeMax amount no

no (but
group
must

differ)

999999999999
Parameter of several

queries (e.g.
nDepChildrenInTu).

#_DataBasename text no

no (but
group
must

differ)

Parameter of query
IsUsedDatabase.

#_N amount no

no (but
group
must

differ)

Parameter of query
IsNtoMchild.

#_M amount no

no (but
group
must

differ)

Parameter of query
IsNtoMchild.

#_Val variable or
incomelist no

no (but
group
must

differ)

Parameter of query
HasMaxValInTu.

#_Income variable or
incomelist no

no (but
group
must

differ)

Parameter of several
queries (e.g.

GetPartnerIncome).

#_Info variable no

no (but
group
must

differ)

Parameter of several
queries (e.g.

GetPartnerInfo).

#_Unique yes/no no

no (but
group
must

differ)

Parameter of query
HasMaxValInTu.

#_Adults_Only yes/no no

no (but
group
must

differ)

Parameter of query
HasMaxValInTu.

Summary of parameters for function Allocate
Allows for (re)allocating amounts (incomes, benefits, taxes) between
members of assessment units.

Function Specific Parameters
Name Type Compulsory Unique Default Description

Share formula yes yes Amount to be (re)allocated between assessment unit
members.

Share_Between condition no yes

Condition that must be fulfilled by a member of the
assessment unit to be among the persons between who the

amount is (re)allocated.
Syntax rules as for parameter Elig_Cond of function Elig

apply.

Share_All_IfNoElig yes/no no yes yes

If no member of the assessment unit fulfils the condition
defined by Share_Between:

- if set to yes: amount is equally (re)allocated among members
of the assessment unit.

- if set to no: Output_Var is set to zero (respectively zero is
added to Output_Add_Var).

Share_Prop variable or
incomelist no yes If the parameter is defined, (re)allocation is carried out in

proportion to this variable/incomelist.

Share_Equ_IfZero yes/no no yes no

If the variable/incomelist defined by Share_Prop is zero for all
members of the assessment unit (who fulfil Share_Between):

- if set to no: an error message is issued.
- if set to yes: amount is equally (re)allocated among all

members of the assessment unit (who fulfil Share_Between).

Ignore_Neg_Prop yes/no no yes no If the variable/incomelist defined by Share_Prop is negative it
is ignored (i.e. it is considered to be zero).

Common Parameters
Name Type Group Compulsory Unique Default Mutually

exclusive with Description

Output_Var variable
yes (if

Output_Add_Var
is not defined)

yes Output_Add_Var

Variable for storing
the result of the

function. Result of
function overwrites
the current value of

the variable.

Output_Add_Var variable
yes (if

Output_Var is
not defined)

yes Output_Var

Variable for storing
the result of the

function. Result of
function is added to
the current value of

the variable.

Result_Var variable no yes Variable for storing
the result of the

function. Result of
function overwrites

the current value of
the variable.

TAX_UNIT taxunit yes yes
Assessment unit for

function's
calculations.

Who_Must_Be_Elig categorical no yes nobody

Function's
calculations are
carried out if ...

- one (one_member):
... one member of the

assessment unit is
"eligible"

- one_adult: ... one
adult member of the
assessment unit is

"eligible"
- all (all_members;

taxunit): ... all
members of the

assessment unit are
"eligible"

- all_adults: ... all
adult members of the
assessment unit are

eligible
- nobody: ... always

"eligible" is
determined by the

variable indicated by
parameter Elig_Var

Elig_Var variable no yes sel_s

Variable indicating
whether a person is

"eligible" (see
parameter

Who_Must_Be_Elig):
- zero: person is not

eligible
- non zero: person is

eligible

Run_Cond condition no yes

Function is only
carried out if the

condition is fulfilled.
The parameter is
intended to be a

conditional switch.
Thus the condition

must not be
individual or

household based, but
refer to a specific
processing state or

other global
condition.

LowLim formula no yes -999999999999.99
Replaces result of
function if result is

smaller.

UpLim formula no yes 999999999999.99
Replaces result of
function if result is

higher.

Threshold formula no yes -999999999999.99 Replaces result of

function if result is
smaller: if lower limit

is not defined by
zero, otherwise by

lower limit.

Round_to amount no yes

Result is rounded to
nearest whole number
if set to 1, to nearest

number with 1
decimal if set to 0.1,
to nearest 10 if set to

10, etc.

Round_Up amount no yes

Result is rounded up
to nearest whole

number if set to 1, to
nearest number with
1 decimal if set to

0.1, to nearest 10 if
set to 10, etc.

Round_Down amount no yes

Result is rounded
down to nearest

whole number if set
to 1, to nearest
number with 1

decimal if set to 0.1,
to nearest 10 if set to

10, etc.

#_LowLim formula no

no (but
group
must

differ)

-999999999999.99

Footnote parameter
for the further

specification of an
operand: replaces

operand if operand is
smaller.

#_UpLim formula no

no (but
group
must

differ)

999999999999.99

Footnote parameter
for the further

specification of an
operand: replaces

operand if operand is
higher.

#_LimPriority categorical no

no (but
group
must

differ)

upper

Footnote parameter
for the further

specification of an
operand:

Possible values:
If upper limit

(#_UpLim) is smaller
than lower limit
(#_LowLim) ...

- upper: ... upper limit
dominates;

- lower: ... lower limit
dominates;

- not defined: ... a
warning is issued.

#_Amount amount no no (but
group
must

differ)

Footnote parameter
for the further

specification of an
operand: indicates the
numeric value of an

operand.

#_Level taxunit no

no (but
group
must

differ)

Footnote parameter
for the further

specification of an
operand: indicates an

alternative
assessment unit for an

operand.

#_AgeMin amount no

no (but
group
must

differ)

-999999999999
Parameter of several

queries (e.g.
nDepChildrenInTu).

#_AgeMax amount no

no (but
group
must

differ)

999999999999
Parameter of several

queries (e.g.
nDepChildrenInTu).

#_DataBasename text no

no (but
group
must

differ)

Parameter of query
IsUsedDatabase.

#_N amount no

no (but
group
must

differ)

Parameter of query
IsNtoMchild.

#_M amount no

no (but
group
must

differ)

Parameter of query
IsNtoMchild.

#_Val variable or
incomelist no

no (but
group
must

differ)

Parameter of query
HasMaxValInTu.

#_Income variable or
incomelist no

no (but
group
must

differ)

Parameter of several
queries (e.g.

GetPartnerIncome).

#_Info variable no

no (but
group
must

differ)

Parameter of several
queries (e.g.

GetPartnerInfo).

#_Unique yes/no no

no (but
group
must

differ)

Parameter of query
HasMaxValInTu.

#_Adults_Only yes/no no

no (but
group
must

differ)

Parameter of query
HasMaxValInTu.

Summary of parameters for function Min
A simple minimum calculator.

Function Specific Parameters
Name Type Compulsory Unique Default Description

Val formula at least one no Values for which the minimum should be calculated.

Positive_Only yes/no no yes no If set to yes, negative and zero-values are ignored.
If there is no positive value the result is 0.

Common Parameters
Name Type Group Compulsory Unique Default Mutually

exclusive with Description

Output_Var variable
yes (if

Output_Add_Var
is not defined)

yes Output_Add_Var

Variable for storing
the result of the

function. Result of
function overwrites
the current value of

the variable.

Output_Add_Var variable
yes (if

Output_Var is
not defined)

yes Output_Var

Variable for storing
the result of the

function. Result of
function is added to
the current value of

the variable.

Result_Var variable no yes

Variable for storing
the result of the

function. Result of
function overwrites
the current value of

the variable.

TAX_UNIT taxunit yes yes
Assessment unit for

function's
calculations.

Who_Must_Be_Elig categorical no yes nobody Function's
calculations are
carried out if ...

- one (one_member):
... one member of the

assessment unit is
"eligible"

- one_adult: ... one
adult member of the
assessment unit is

"eligible"
- all (all_members;

taxunit): ... all
members of the

assessment unit are
"eligible"

- all_adults: ... all

adult members of the
assessment unit are

eligible
- nobody: ... always

"eligible" is
determined by the

variable indicated by
parameter Elig_Var

Elig_Var variable no yes sel_s

Variable indicating
whether a person is

"eligible" (see
parameter

Who_Must_Be_Elig):
- zero: person is not

eligible
- non zero: person is

eligible

Run_Cond condition no yes

Function is only
carried out if the

condition is fulfilled.
The parameter is
intended to be a

conditional switch.
Thus the condition

must not be
individual or

household based, but
refer to a specific
processing state or

other global
condition.

LowLim formula no yes -999999999999.99
Replaces result of
function if result is

smaller.

UpLim formula no yes 999999999999.99
Replaces result of
function if result is

higher.

Threshold formula no yes -999999999999.99

Replaces result of
function if result is

smaller: if lower limit
is not defined by

zero, otherwise by
lower limit.

Round_to amount no yes

Result is rounded to
nearest whole number
if set to 1, to nearest

number with 1
decimal if set to 0.1,
to nearest 10 if set to

10, etc.

Round_Up amount no yes

Result is rounded up
to nearest whole

number if set to 1, to
nearest number with
1 decimal if set to

0.1, to nearest 10 if
set to 10, etc.

Round_Down amount no yes Result is rounded
down to nearest

whole number if set
to 1, to nearest
number with 1

decimal if set to 0.1,
to nearest 10 if set to

10, etc.

#_LowLim formula no

no (but
group
must

differ)

-999999999999.99

Footnote parameter
for the further

specification of an
operand: replaces

operand if operand is
smaller.

#_UpLim formula no

no (but
group
must

differ)

999999999999.99

Footnote parameter
for the further

specification of an
operand: replaces

operand if operand is
higher.

#_LimPriority categorical no

no (but
group
must

differ)

upper

Footnote parameter
for the further

specification of an
operand:

Possible values:
If upper limit

(#_UpLim) is smaller
than lower limit
(#_LowLim) ...

- upper: ... upper limit
dominates;

- lower: ... lower limit
dominates;

- not defined: ... a
warning is issued.

#_Amount amount no

no (but
group
must

differ)

Footnote parameter
for the further

specification of an
operand: indicates the
numeric value of an

operand.

#_Level taxunit no

no (but
group
must

differ)

Footnote parameter
for the further

specification of an
operand: indicates an

alternative
assessment unit for an

operand.

#_AgeMin amount no

no (but
group
must

differ)

-999999999999
Parameter of several

queries (e.g.
nDepChildrenInTu).

#_AgeMax amount no

no (but
group
must

differ)

999999999999
Parameter of several

queries (e.g.
nDepChildrenInTu).

#_DataBasename text no

no (but
group
must

differ)

Parameter of query
IsUsedDatabase.

#_N amount no no (but Parameter of query

group
must

differ)

IsNtoMchild.

#_M amount no

no (but
group
must

differ)

Parameter of query
IsNtoMchild.

#_Val variable or
incomelist no

no (but
group
must

differ)

Parameter of query
HasMaxValInTu.

#_Income variable or
incomelist no

no (but
group
must

differ)

Parameter of several
queries (e.g.

GetPartnerIncome).

#_Info variable no

no (but
group
must

differ)

Parameter of several
queries (e.g.

GetPartnerInfo).

#_Unique yes/no no

no (but
group
must

differ)

Parameter of query
HasMaxValInTu.

#_Adults_Only yes/no no

no (but
group
must

differ)

Parameter of query
HasMaxValInTu.

Summary of parameters for function Max
A simple maximum calculator.

Function Specific Parameters
Name Type Compulsory Unique Default Description

Val formula at least two no Values for which the maximum should be calculated.

Common Parameters
Name Type Group Compulsory Unique Default Mutually

exclusive with Description

Output_Var variable
yes (if

Output_Add_Var
is not defined)

yes Output_Add_Var

Variable for storing
the result of the

function. Result of
function overwrites
the current value of

the variable.

Output_Add_Var variable
yes (if

Output_Var is
not defined)

yes Output_Var

Variable for storing
the result of the

function. Result of
function is added to
the current value of

the variable.

Result_Var variable no yes

Variable for storing
the result of the

function. Result of
function overwrites
the current value of

the variable.

TAX_UNIT taxunit yes yes
Assessment unit for

function's
calculations.

Who_Must_Be_Elig categorical no yes nobody Function's
calculations are
carried out if ...

- one (one_member):
... one member of the

assessment unit is
"eligible"

- one_adult: ... one
adult member of the
assessment unit is

"eligible"
- all (all_members;

taxunit): ... all
members of the

assessment unit are
"eligible"

- all_adults: ... all
adult members of the
assessment unit are

eligible

- nobody: ... always
"eligible" is

determined by the
variable indicated by
parameter Elig_Var

Elig_Var variable no yes sel_s

Variable indicating
whether a person is

"eligible" (see
parameter

Who_Must_Be_Elig):
- zero: person is not

eligible
- non zero: person is

eligible

Run_Cond condition no yes

Function is only
carried out if the

condition is fulfilled.
The parameter is
intended to be a

conditional switch.
Thus the condition

must not be
individual or

household based, but
refer to a specific
processing state or

other global
condition.

LowLim formula no yes -999999999999.99
Replaces result of
function if result is

smaller.

UpLim formula no yes 999999999999.99
Replaces result of
function if result is

higher.

Threshold formula no yes -999999999999.99

Replaces result of
function if result is

smaller: if lower limit
is not defined by

zero, otherwise by
lower limit.

Round_to amount no yes

Result is rounded to
nearest whole number
if set to 1, to nearest

number with 1
decimal if set to 0.1,
to nearest 10 if set to

10, etc.

Round_Up amount no yes

Result is rounded up
to nearest whole

number if set to 1, to
nearest number with
1 decimal if set to

0.1, to nearest 10 if
set to 10, etc.

Round_Down amount no yes Result is rounded
down to nearest

whole number if set
to 1, to nearest
number with 1

decimal if set to 0.1,
to nearest 10 if set to

10, etc.

#_LowLim formula no

no (but
group
must

differ)

-999999999999.99

Footnote parameter
for the further

specification of an
operand: replaces

operand if operand is
smaller.

#_UpLim formula no

no (but
group
must

differ)

999999999999.99

Footnote parameter
for the further

specification of an
operand: replaces

operand if operand is
higher.

#_LimPriority categorical no

no (but
group
must

differ)

upper

Footnote parameter
for the further

specification of an
operand:

Possible values:
If upper limit

(#_UpLim) is smaller
than lower limit
(#_LowLim) ...

- upper: ... upper limit
dominates;

- lower: ... lower limit
dominates;

- not defined: ... a
warning is issued.

#_Amount amount no

no (but
group
must

differ)

Footnote parameter
for the further

specification of an
operand: indicates the
numeric value of an

operand.

#_Level taxunit no

no (but
group
must

differ)

Footnote parameter
for the further

specification of an
operand: indicates an

alternative
assessment unit for an

operand.

#_AgeMin amount no

no (but
group
must

differ)

-999999999999
Parameter of several

queries (e.g.
nDepChildrenInTu).

#_AgeMax amount no

no (but
group
must

differ)

999999999999
Parameter of several

queries (e.g.
nDepChildrenInTu).

#_DataBasename text no

no (but
group
must

differ)

Parameter of query
IsUsedDatabase.

#_N amount no

no (but
group
must

differ)

Parameter of query
IsNtoMchild.

#_M amount no no (but
group
must

differ)

Parameter of query
IsNtoMchild.

#_Val variable or
incomelist no

no (but
group
must

differ)

Parameter of query
HasMaxValInTu.

#_Income variable or
incomelist no

no (but
group
must

differ)

Parameter of several
queries (e.g.

GetPartnerIncome).

#_Info variable no

no (but
group
must

differ)

Parameter of several
queries (e.g.

GetPartnerInfo).

#_Unique yes/no no

no (but
group
must

differ)

Parameter of query
HasMaxValInTu.

#_Adults_Only yes/no no

no (but
group
must

differ)

Parameter of query
HasMaxValInTu.

Summary of parameters for function Uprate
Allows for the uprating of monetary dataset variables.

Function Specific Parameters
Name Type Group Compulsory Unique Default Description

Dataset text at least one no

Name of a dataset(s) for which the uprating
settings apply.

If the settings apply for several datasets, the
parameter can be used more than once.
Moreover, the wildcards * and ? can be

used, where * stands for any character and ?
stands for one arbitrary character (e.g.

be_20*_v?).

Def_Factor text no yes

Factor, which is applied on all monetary
variables in the dataset that do not have a

particular own factor.
Possible values are amounts (e.g. 1.023) or

factors as defined by parameters
Factor_Name, Factor_Value,

Factor_Condition.

Factor_Name text FACTOR_DEF within group within
group

Name of a specific uprating factor, whose
value is specified by parameter

Factor_Value.

Factor_Value text FACTOR_DEF within group within
group

Value of a specific uprating factor.
If no name is specified via Factor_Name,

the factor can be addressed as factorX,
where X refers to the number in the Grp/No

column.

[Placeholder]

policy
column:
variable
system
column:

text

FACTOR within group within
group

[Placeholder] stands for the name of a
variable, defined in the policy column,

whose uprating factors are specified in the
respective system columns.

The uprating factors can be indicated as
amounts (e.g. 1.023) or factors, as defined

by parameters Factor_Name, Factor_Value,
Factor_Condition.

Factor_Condition condition FACTOR no within
group

Condition that needs to be fulfilled to apply
the factor specified by parameters

Factor_Value and (optionally) Factor_Name.

AggVar_Name variable AGG_VAR within group within
group Name of an aggregate variable (e.g. yse).

AggVar_Part variable AGG_VAR at least one no
Name of a component variable of the

aggregate variable defined by
AggVar_Name (e.g. ysebs).

AggVar_Tolerance amount AGG_VAR no within
group

If the value of the variable specified by
parameter AggVar_Name differs from the

sum of its components defined by
parameters AggVar_Part, an error message
is issued, but only if the absolute difference

is higher than aggvarX_tolerance.

WarnIfNonMonetary yes/no no yes yes If set to yes, a warning is issued for uprating

non-monetary variables.

WarnIfNoFactor yes/no no yes yes
If set to yes a warning is issued for any
monetary dataset variable without an

explicitly defined uprating factor.

DBYearVar text no yes
If your dataset contains multiple years, use

this parameter to specify which variable
holds the DB year in the input data.

RegExp_Def text REG_EXP within group within
group

Pattern (regular expression) defining the
group of variables to be uprated by

RegExp_Factor, e.g. x[0-9]+.

RegExp_Factor text REG_EXP within group within
group

Factor by which the variables defined by
RegExp_Def are uprated.

Common Parameters
Name Type Compulsory Unique Description

Run_Cond condition no yes

Function is only carried out if the condition is fulfilled. The parameter is
intended to be a conditional switch. Thus the condition must not be

individual or household based, but refer to a specific processing state or
other global condition.

#_DataBasename text no

no (but
group
must

differ)

Parameter of query IsUsedDatabase.

Summary of parameters for function
SetDefault
Allows for the setting of default values for not existent dataset
variables.

Function Specific Parameters
Name Type Compulsory Unique Description

Dataset text at least one no

Name of a dataset(s) for which the default settings apply.
If the settings apply for several datasets, the parameter can be used more than

once. Moreover, the wildcards * and ? can be used, where * stands for any
character and ? stands for one arbitrary character (e.g. be_20*_v?).

[Placeholder]

policy
column:

text
system
column:
formula

at least one no
[Placeholder] stands for the name of a variable, defined in the policy column,
whose default values are specified in the respective system columns (i.e. the

default may be system specific).

Common Parameters
Name Type Compulsory Unique Description

Run_Cond condition no yes

Function is only carried out if the condition is fulfilled. The parameter is
intended to be a conditional switch. Thus the condition must not be

individual or household based, but refer to a specific processing state or
other global condition.

#_DataBasename text no

no (but
group
must

differ)

Parameter of query IsUsedDatabase.

Summary of parameters for function DefIl
Allows for the definition of incomelists.

Function Specific Parameters
Name Type Group Compulsory Unique Default Description
Name text yes yes Name of the incomelist.

[Placeholder]

policy column:
variable or
incomelist

system
column: factor

no no

[Placeholder] stands for the name of a
component (variable or incomelist) of
the incomelist, which is defined in the

policy column.
A plus (+) in the respective system's
column means that the component is
added. A minus (-) indicates that the

component is subtracted.
Also, a factor can be used, e.g. +3 means

that the component is added 3 times.

Warn_If_NonMonetary yes/no no yes yes If yes, a warning is issued if any
component is non-monetary.

RegExp_Def text REG_EXP within group within
group

Pattern (regular expression) defining a
group of variables, which should become
components of the incomelist, e.g. x[0-

9]+.

RegExp_Factor text REG_EXP no within
group +

A plus (+) means that the variables
matching the respective RegExp_Def are

added to the incomelist. A minus (-)
indicates that the variables are

subtracted.
Also, a factor can be used, e.g. +3 means

that the variables are added 3 times.
If the parameter is omitted, variables are

added.

Summary of parameters for function DefTu
Allows for the definition of assessment units.
Note that parameters may use variables with the prefixes "head:" or "partner:". These prefixes can be
used with variables only, not with incomelists or queries.
Also note that "Default" can be used to further define any default condition (as indicated in Default
Value).

Function Specific Parameters
Name Type Compulsory Unique Default Description

Type categorical yes yes

Indicates the scope of the ass
unit.

Possible values:
- HH: all members of the hou

belong to one unit.
- IND: each members of

household forms an own
- SUBGROUP: unit membe

specified as indicated in
parameter Members.

Name text yes yes Name of the assessment u

Members text no yes

Specifies which members
household form a unit, if par

Type is set to SUBGRO
Syntax: Status & Status & S

..., e.g. Partner & OwnCh

Possible values for Stat
- Partner: defined by param

PartnerCond
- OwnDepChild: defined

parameter OwnDepChildC
- LooseDepChild: define

parameter LooseDepChild
- OwnChild: defined by par

OwnChildCond
- DepParent: defined by par

DepParentCond
- DepRelative: defined by pa

DepRelativeCond

Note, that the Head is obvi
always part of unit and (us

relations are defined with re
to the Head.

HeadDefInc variable or
incomelist no yes ils_OrigY

Incomelist used for determin
is the richest person in t

assessment unit, see param
ExtHeadCond.

ExtHeadCond condition no yes !IsDepChild

Condition further defining th
of the assessment unit. The c
is &-linked with the followin

head condition:
HeadDefInc>anyother:HeadD
(HeadDefInc>=anyother:Hea

& dag>anyother:dag)
(HeadDefInc>=anyother:Hea

& dag>=anyother:dag
idperson<anyother:idpers

where 'anyother' refers to po
heads, in the sense of fulfi

ExtHeadCond.

PartnerCond condition no yes head:idperson=idpartner Condition defining who is a

DepChildCond condition no yes !isparent&idpartner<=0

Condition defining who
dependent child.

The "real" default, i.e. if
 parameter is not defined or se

is 0 (i.e. nobody is a chi
However, setting the param

"Default" is interpreted
!isparent&idpartner<=

OwnChildCond condition no yes head:idperson=idmother|head:idperson=idfather|partner:idperson=idmother|partner:idperson=idfather Condition defining who is a
child.

OwnDepChildCond condition no yes isownchild&isdepchild Condition defining who is a
dependent child.

LooseDepChildCond condition no yes idmother=0&idfather=0&isdepchild Condition defining who is a
dependent child.

DepParentCond condition no yes head:idmother=idperson|head:idfather=idperson|partner:idmother=idperson|partner:idfather=idperson Condition defining who
dependent parent.

DepRelativeCond condition no yes 0 Condition defining who

dependent relative.

LoneParentCond condition no yes isparentofdepchild&idpartner<=0 Condition defining who is
parent.

StopIfNoHeadFound yes/no no yes no

If set to yes: an error is iss
ExtHeadCond rules out all ho

members.
If set to no: no error issued,

ExtHeadCond is dropped for
households.

NoChildIfHead yes/no no yes no
If set to yes (possible) child
removed if person is the Hea

assessment unit.

NoChildIfPartner yes/no no yes no
If set to yes (possible) child

removed if person is Partn
defined by parameter Partne

AssignDepChOfDependents yes/no no yes no

If set to yes dependent child
dependent unit members (i.e.

who are not Head or Partner
unit) are assigned to the u

AssignPartnerOfDependents yes/no no yes no

If set to yes partners of dep
unit members (i.e. persons w
not Head or Partner of the u

assigned to the unit.

MultiplePartners categorical no yes warn

Allows customizing the beh
when multiple partners are f

the data.

Possible values:
- warn: Gives out a warning
multiple partners are found

keeps only the first one
- ignore: Keeps only the first

found, without giving out
warnings.

- allow: Keeps all partners. T
still connects only to the first
found, but all partners have I

set to true.

IsStatic yes/no no yes yes

If set to no, TU is recreated
use.

Set to 'no' e.g. for a child-de
depending on a variable that

during run.

Common Parameters
#_LowLim formula no no (but group must

differ) -999999999999.99 Footnote parameter for the further specification of an operand: replaces operand if operand is smaller.

#_UpLim formula no no (but group must
differ) 999999999999.99 Footnote parameter for the further specification of an operand: replaces operand if operand is higher.

#_LimPriority categorical no no (but group must
differ) upper

Footnote parameter for the further specification of an operand:
Possible values:

If upper limit (#_UpLim) is smaller than lower limit (#_LowLim) ...
- upper: ... upper limit dominates;
- lower: ... lower limit dominates;

- not defined: ... a warning is issued.

#_Amount amount no no (but group must
differ)

Footnote parameter for the further specification of an operand: indicates the numeric value of an
operand.

#_Level taxunit no no (but group must
differ)

Footnote parameter for the further specification of an operand: indicates an alternative assessment unit
for an operand.

#_AgeMin amount no no (but group must
differ) -999999999999 Parameter of several queries (e.g. nDepChildrenInTu).

#_AgeMax amount no no (but group must
differ) 999999999999 Parameter of several queries (e.g. nDepChildrenInTu).

#_DataBasename text no no (but group must
differ) Parameter of query IsUsedDatabase.

#_N amount no no (but group must
differ) Parameter of query IsNtoMchild.

#_M amount no no (but group must
differ) Parameter of query IsNtoMchild.

#_Val variable or
incomelist no no (but group must

differ) Parameter of query HasMaxValInTu.

#_Income variable or
incomelist no no (but group must

differ) Parameter of several queries (e.g. GetPartnerIncome).

#_Info variable no no (but group must
differ) Parameter of several queries (e.g. GetPartnerInfo).

#_Unique yes/no no no (but group must
differ) Parameter of query HasMaxValInTu.

#_Adults_Only yes/no no no (but group must
differ) Parameter of query HasMaxValInTu.

Summary of parameters for function
UpdateTu
Allows for the re-assessment of assessment units.

Function Specific Parameters
Name Type Compulsory Unique Description
Name taxunit yes, if Update_All is not defined yes Name of the assessment unit.

Update_All yes/no yes, if Name is not defined yes If set to yes all assessment units are updated.

Common Parameters
Name Type Compulsory Unique Description

Run_Cond condition no yes

Function is only carried out if the condition is fulfilled. The parameter is
intended to be a conditional switch. Thus the condition must not be

individual or household based, but refer to a specific processing state or
other global condition.

#_DataBasename text no

no (but
group
must

differ)

Parameter of query IsUsedDatabase.

Summary of parameters for function
DefOutput
Allows for the definition of model output.

Function Specific Parameters
Name Type Group Compulsory Unique Default Description

File text yes yes*

Name of text file to write the output to
(the extension .txt can be omitted).

*Note that EUROMOD will allow you to
add multiple File parameters, with the
sole purpose of using them in separate

extensions. If in any given configuration
more than one applicable filenames are

found, a warning will be issued and only
the last applicable filename will be used.

Var variable no no Name of a variable to be included in the
output.

VarGroup text no no

Regular expression that describes a group
of variables to be included in the output,
where * stands for any character and ?

stands for one arbitrary character (e.g. b*
includes all variables starting with b).

IL text no no

Name of an incomelist to be included in
the output.

The total value of the incomelist is
outputted (see parameter DefIL for

outputting components).

ILGroup text no no

Regular expression that describes a group
of incomelists to be included in the

output, where * stands for any character
and ? stands for one arbitrary character

(e.g. ils* for all system incomelists).

DefIL incomelist no no

Name of an incomelist to be included in
the output.

The content of the incomelist is
outputted, i.e. the variables contained in

the incomelist (see parameter IL for
outputting the total value).

UnitInfo_Id categorical UNIT_INFO no no The UnitInfo parameters allow the
determination of the "status" of single
members within the assessment unit

specified by UnitInfo_TU.
Possible values of UnitInfo_Id are:

- HeadID: the output includes PersonId of
the unit's Head.

- IsPartner: the output includes a 0/1-
variable for being Partner.

- IsDependentChild (IsDepChild): the
output includes a 0/1-variable for being a

dependent child.
- IsOwnChild: the output includes a 0/1-

variable for being an own child.
- IsOwnDependentChild

(IsOwnDepChild): the output includes a
0/1-variable for being an own dependent

child.
- IsDepParent: the output includes a 0/1-

variable for being a dependent parent.
- IsDepRelative: the output includes a

0/1-variable for being a dependent
relative.

- IsLoneParent: the output includes a 0/1-
variable for being a lone parent.

UnitInfo_TU taxunit UNIT_INFO within group within
group

Assessment unit for which UnitInfo_Id
parameters apply.

Note, that outputting unit info variables
usually only makes sense if TAX_UNIT
is set to an individual assessment unit.

nDecimals amount no yes 2
Number of decimals of monetary

variables to show in output.
Values with more decimals are rounded.

Suppress_Void_Message yes/no no yes no If set to yes, the warning for an
'undefined' variable is suppressed.

Replace_Void_By amount no yes 0 Amount to be used for 'undefined' in the
output.

Append yes/no no yes no

If set to yes: any existing content of the
output file is removed.

If set to no: output is added to any
existing content of the output file.

MultiplyMonetaryBy formula no yes 1

All monetary values are multiplied by
this factor.

(Allows e.g. for the specification of a
special exchange rate).

Common Parameters
Name Type Compulsory Unique Default Description

TAX_UNIT taxunit yes yes Assessment unit for function's calculations.

Who_Must_Be_Elig categorical no yes nobody

Function's calculations are carried out if ...
- one (one_member): ... one member of the assessment unit

is "eligible"
- one_adult: ... one adult member of the assessment unit is

"eligible"
- all (all_members; taxunit): ... all members of the

assessment unit are "eligible"
- all_adults: ... all adult members of the assessment unit are

eligible
- nobody: ... always

"eligible" is determined by the variable indicated by
parameter Elig_Var

Elig_Var variable no yes sel_s

Variable indicating whether a person is "eligible" (see
parameter Who_Must_Be_Elig):

- zero: person is not eligible
- non zero: person is eligible

Run_Cond condition no yes Function is only carried out if the condition is fulfilled. The
parameter is intended to be a conditional switch. Thus the

condition must not be individual or household based, but
refer to a specific processing state or other global condition.

#_DataBasename text no

no (but
group
must

differ)

Parameter of query IsUsedDatabase.

Summary of parameters for function DefVar
Allows for the definition of intermediate variables.

Function Specific Parameters
Name Type Group Compulsory Unique Default Description

[Placeholder]

policy column:
text, system

column:
formula

VAR_DEF within group within
group

[Placeholder] stands for the name of the
variable, which is defined in the policy column.

Optionally a (constant) initial value can be
defined in the (respective) system column (i.e.

may be system specific).
After its definition the variable can (apart from

minor specifics) be used in the same way as
regular variables.

Var_Monetary yes/no VAR_DEF no within
group yes

If set to no: variable with same group is treated
as a non-monetary variable, otherwise as a

monetary variable.

Var_Dataset text no yes

If set, variables are only defined if the
respective dataset is used for the run.

The wildcards * and ? can be used, where *
stands for any character and ? stands for one

arbitrary character (e.g. be_20*_a?).

Var_SystemYear text no yes n/a

If set, variables are only defined if the run
concerns the respective system year.

The wildcards * and ? can be used, where *
stands for any character and ? stands for one

arbitrary character (e.g. 20??).

Common Parameters
Name Type Compulsory Unique Default Description

Run_Cond condition no yes

Function is only carried out if the condition is
fulfilled. The parameter is intended to be a

conditional switch. Thus the condition must not be
individual or household based, but refer to a specific

processing state or other global condition.

#_LowLim formula no

no (but
group
must

differ)

-999999999999.99 Footnote parameter for the further specification of an
operand: replaces operand if operand is smaller.

#_UpLim formula no

no (but
group
must

differ)

999999999999.99 Footnote parameter for the further specification of an
operand: replaces operand if operand is higher.

#_LimPriority categorical no no (but
group
must

differ)

upper Footnote parameter for the further specification of an
operand:

Possible values:
If upper limit (#_UpLim) is smaller than lower limit

(#_LowLim) ...
- upper: ... upper limit dominates;

- lower: ... lower limit dominates;
- not defined: ... a warning is issued.

#_Amount amount no

no (but
group
must

differ)

Footnote parameter for the further specification of an
operand: indicates the numeric value of an operand.

#_DataBasename text no

no (but
group
must

differ)

Parameter of query IsUsedDatabase.

Summary of parameters for function
DefConst
Allows for the definition of constants.

Function Specific Parameters
Name Type Group Compulsory Unique Description

[Placeholder] formula CONST_DEF within group within
group

[Placeholder] stands for the name of the constant, which
is defined in the policy column. The value of the constant
is defined in the (respective) system column (i.e. may be

system specific).
Note that the value of the constant can also be (re)defined
by e.g. ArithOp, but it must not be household or person

specific (i.e. as a constant it must be equal for each
individual).

Condition condition CONST_DEF no within
group

If set, constant with same group only takes this value if
condition is fulfilled (i.e. allows for different values

based on conditions).
Note that a conditioned constant cannot be used as global
value (e.g. in Run_Cond), because it is not equal for all

individuals.

Const_Dataset text no yes

If set, constants are only defined if the respective dataset
is used for the run. The wildcards * and ? can be used,
where * stands for any character and ? stands for one

arbitrary character (e.g. be_20*_a?).

Const_SystemYear text no yes

If set, constants are only defined if the run concerns the
respective system year. The wildcards * and ? can be

used, where * stands for any character and ? stands for
one arbitrary character (e.g. 20??).

Common Parameters
Name Type Compulsory Unique Default Description

Run_Cond condition no yes

Function is only carried out if the condition is
fulfilled. The parameter is intended to be a

conditional switch. Thus the condition must not be
individual or household based, but refer to a specific

processing state or other global condition.

#_LowLim formula no

no (but
group
must

differ)

-999999999999.99 Footnote parameter for the further specification of an
operand: replaces operand if operand is smaller.

#_UpLim formula no

no (but
group
must

differ)

999999999999.99 Footnote parameter for the further specification of an
operand: replaces operand if operand is higher.

#_LimPriority categorical no no (but
group
must

differ)

upper Footnote parameter for the further specification of an
operand:

Possible values:
If upper limit (#_UpLim) is smaller than lower limit

(#_LowLim) ...
- upper: ... upper limit dominates;
- lower: ... lower limit dominates;

- not defined: ... a warning is issued.

#_Amount amount no

no (but
group
must

differ)

Footnote parameter for the further specification of an
operand: indicates the numeric value of an operand.

#_DataBasename text no

no (but
group
must

differ)

Parameter of query IsUsedDatabase.

Summary of parameters for function InitVars
Allows for initialising variables.

Function Specific Parameters
Name Type Compulsory Unique Description

[Placeholder]

policy
column:
variable
system
column:
formula

no no [Placeholder] stands for the name of a variable, defined in the policy
column, whose initial value is specified in the respective system column.

InitOnce yes/no no yes

Only relevant if used in loops or in reference policies.
If set to 'yes', initialisation only takes place once, e.g. in the first iteration

of a loop.
Default is 'no', meaning that initialisation takes place whenever the run

hits the function (e.g. in each iteration of a loop).

Common Parameters
Name Type Compulsory Unique Description

Run_Cond condition no yes
Function is only carried out if the condition is fulfilled. The parameter is intended

to be a conditional switch. Thus the condition must not be individual or
household based, but refer to a specific processing state or other global condition.

Summary of parameters for function Loop
Allows for repeating a part (or all) of the tax-benefit calculations.

Function Specific Parameters
Name Type Compulsory Unique Mutually exclusive

with Description

Loop_Id text yes yes

Unique identifier for the loop.
The identifier is used amongst others for

constructing the name of the loop count variable
'LoopCount_Loop_Id'.

Num_Iterations amount
yes (if

BreakCond is
not defined)

yes BreakCond Number of loop iterations.

BreakCond condition
yes (if

Num_Iterations
is not defined)

yes Num_Iterations
Break condition checked at the end of the loop.

The condition must not contain
household/individual specific operators.

First_Pol text
yes (if no

substitute is
defined)

yes
Start_After_Pol,

First_Func,
Start_After_Func

Name of loop's first policy.

First_Func text
yes (if no

substitute is
defined)

yes
First_Pol,

Start_After_Pol,
Start_After_Func

Identifier of loop's first function.
The identifier cannot refer to functions which

are independent of the policy spine (func_loop,
func_unitloop, etc.).

(See 'EUROMOD Functions - Identifiers and
the placeholders =cc= and =sys=' for

information on identifiers.)

Start_After_Pol text
yes (if no

substitute is
defined)

yes
First_Pol,

First_Func,
Start_After_Func

Name of the policy after which the loop starts.

Start_After_Func text
yes (if no

substitute is
defined)

yes
First_Pol,

Start_After_Pol,
First_Func

Identifier of the function after which the loop
starts.

The identifier cannot refer to functions which
are independent of the policy spine (func_loop,

func_unitloop, etc.).
(See 'EUROMOD Functions - Identifiers and

the placeholders =cc= and =sys=' for
information on identifiers.)

Last_Pol text
yes (if no

substitute is
defined)

yes
Stop_Before_Pol,

Last_Func,
Stop_Before_Func

Name of loop's last policy.

Last_Func text
yes (if no

substitute is
defined)

yes
Last_Pol,

Stop_Before_Pol,
Stop_Before_Func

Identifier of loop's last function.
The identifier cannot refer to functions which

are independent of the policy spine (func_loop,
func_unitloop, etc.).

(See 'EUROMOD Functions - Identifiers and
the placeholders =cc= and =sys=' for

information on identifiers.)

Stop_Before_Pol text
yes (if no

substitute is
defined)

yes
Last_Pol,

Last_Func,
Stop_Before_Func

Name of the policy before which the loop ends.

Stop_Before_Func text yes (if no yes Last_Pol, Identifier of the function before which the loop

substitute is
defined)

Stop_Before_Pol,
Last_Func

ends.
The identifier cannot refer to functions which

are independent of the policy spine (func_loop,
func_unitloop, etc.).

(See 'EUROMOD Functions - Identifiers and
the placeholders =cc= and =sys=' for

information on identifiers.)

Common Parameters
Name Type Compulsory Unique Description

Run_Cond condition no yes

Function is only carried out if the condition is fulfilled. The parameter is
intended to be a conditional switch. Thus the condition must not be

individual or household based, but refer to a specific processing state or
other global condition.

#_DataBasename text no

no (but
group
must

differ)

Parameter of query IsUsedDatabase.

Summary of parameters for function
UnitLoop
Allows for repeating part (or all) of the tax-benefit calculation.

Function Specific Parameters
Name Type Compulsory Unique Default Mutually

exclusive with Description

Loop_Id text yes yes

Unique identifier for the loop.
The identifier is used amongst others
for constructing the name of the loop
count variable 'LoopCount_Loop_Id'.

Elig_Unit taxunit yes yes Calculations are repeated for each
Elig_Unit within the household.

Elig_Unit_Cond condition no yes {1}
Calculations are only carried out for

Elig_Units, which are fulfil this
condition.

Elig_Unit_Cond_Who categorical no yes all

Defines which members of the unit
must fulfil Elig_Unit_Cond to make

the unit fulfil the condition.
For possible values see the common

parameter Who_Must_Be_Elig.

Run_Once_If_No_Elig yes/no no yes no

If there is no Elig_Unit within the
household, which fulfils

Elig_Unit_Cond:
If set to yes: policies enclosed by the

loop are still carried out (once).
If set to no: the polices enclosed by

the loop are not carried out.

First_Pol text
yes (if no

substitute is
defined)

yes
First_Func,

Start_After_Pol,
Start_After_Func

Name of loop's first policy.

First_Func text
yes (if no

substitute is
defined)

yes
First_Pol,

Start_After_Pol,
Start_After_Func

Identifier of loop's first function.
The identifier cannot refer to

functions which are independent of
the policy spine (func_loop,

func_unitloop, etc.).
(See 'EUROMOD Functions -

Identifiers and the placeholders =cc=
and =sys=' for information on

identifiers.)

Start_After_Pol text
yes (if no

substitute is
defined)

yes
First_Pol,

First_Func,
Start_After_Func

Name of the policy after which the
loop starts.

Start_After_Func text yes (if no
substitute is

defined)

yes First_Pol,
First_Func,

Start_After_Pol

Identifier of the function after which
the loop starts.

The identifier cannot refer to
functions which are independent of

the policy spine (func_loop,
func_unitloop, etc.).

(See 'EUROMOD Functions -

Identifiers and the placeholders =cc=
and =sys=' for information on

identifiers.)

Last_Pol text
yes (if no

substitute is
defined)

yes
Last_Func,

Stop_Before_Pol,
Stop_Before_Func

Name of loop's last policy.

Last_Func text
yes (if no

substitute is
defined)

yes
Last_Pol,

Stop_Before_Pol,
Stop_Before_Func

Identifier of loop's last function.
The identifier cannot refer to

functions which are independent of
the policy spine (func_loop,

func_unitloop, etc.).
(See 'EUROMOD Functions -

Identifiers and the placeholders =cc=
and =sys=' for information on

identifiers.)

Stop_Before_Pol text
yes (if no

substitute is
defined)

yes
Last_Pol,

Last_Func,
Stop_Before_Func

Name of the policy before which the
loop ends.

Stop_Before_Func text
yes (if no

substitute is
defined)

yes
Last_Pol,

Last_Func,
Stop_Before_Pol

Identifier of the function before
which the loop ends.

The identifier cannot refer to
functions which are independent of

the policy spine (func_loop,
func_unitloop, etc.).

(See 'EUROMOD Functions -
Identifiers and the placeholders =cc=

and =sys=' for information on
identifiers.)

Common Parameters

Name Type Group Compulsory Unique Default
Mutually
exclusive

with
Description

Run_Cond condition no yes

Function is only carried out if the
condition is fulfilled. The

parameter is intended to be a
conditional switch. Thus the

condition must not be individual
or household based, but refer to a
specific processing state or other

global condition.

#_UpLim formula no

no (but
group
must

differ)

999999999999.99

Footnote parameter for the further
specification of an operand:

replaces operand if operand is
higher.

#_LimPriority categorical no

no (but
group
must

differ)

upper

Footnote parameter for the further
specification of an operand:

Possible values:
If upper limit (#_UpLim) is

smaller than lower limit
(#_LowLim) ...

- upper: ... upper limit dominates;
- lower: ... lower limit dominates;

- not defined: ... a warning is
issued.

#_Amount amount no no (but Footnote parameter for the further

group
must

differ)

specification of an operand:
indicates the numeric value of an

operand.

#_Level taxunit no

no (but
group
must

differ)

Footnote parameter for the further
specification of an operand:

indicates an alternative
assessment unit for an operand.

#_AgeMin amount no

no (but
group
must

differ)

-999999999999 Parameter of several queries (e.g.
nDepChildrenInTu).

#_AgeMax amount no

no (but
group
must

differ)

999999999999 Parameter of several queries (e.g.
nDepChildrenInTu).

#_DataBasename text no

no (but
group
must

differ)

Parameter of query
IsUsedDatabase.

#_N amount no

no (but
group
must

differ)

Parameter of query IsNtoMchild.

#_M amount no

no (but
group
must

differ)

Parameter of query IsNtoMchild.

#_Val variable or
incomelist no

no (but
group
must

differ)

Parameter of query
HasMaxValInTu.

#_Income variable or
incomelist no

no (but
group
must

differ)

Parameter of several queries (e.g.
GetPartnerIncome).

#_Info variable no

no (but
group
must

differ)

Parameter of several queries (e.g.
GetPartnerInfo).

#_Unique yes/no no

no (but
group
must

differ)

Parameter of query
HasMaxValInTu.

#_Adults_Only yes/no no

no (but
group
must

differ)

Parameter of query
HasMaxValInTu.

Summary of parameters for function Store
Provides a 'save as' functionality for variables, incomelists and
components of incomelists.

Function Specific Parameters

Name Type Group Compulsory Unique Default
Mutually
exclusive
with

Description

PostLoop text
yes (if

PostFix is
not definde)

yes PostFix

Copies of stored variables are called
VarName_PostLoopIteration.

For example: Var = yem, PostLoop = myloop:
name of copies = yem_myloop1 (1. iteration),

yem_myloop2 (2. iteration), etc.

PostFix text
yes (if

PostLoop is
not definde)

yes PostLoop

Copies of stored variables are called
VarName_PostFix.

For example: Var = yem, PostFix = bkup: name of
copy = yem_bkup.

Var variable VAR within group within
group Name of a variable to be stored.

Var_Level taxunit VAR no within
group

Alternative assessment unit: variable's value is
assessed based on this unit.

Note that the parameter is only relevant if
PostLoop refers to a UnitLoop.

IL incomelist IL within group within
group

Incomelist whose entries (i.e. variables) are to be
stored.

IL_Level taxunit IL no within
group

Alternative assessment unit: the value of the
variables included in IL is assessed based on this

unit.
Note that the parameter is only relevant if

PostLoop refers to a UnitLoop.

Level taxunit no yes
EligUnit

of
UnitLoop

Alternative assessment unit: the value of all
variables is assessed based on this unit, except for

those which have a specific own
Var_Level/IL_Level.

Note that the parameter is only relevant if
PostLoop refers to a UnitLoop.

Common Parameters
Name Type Compulsory Unique Description

Run_Cond condition no yes

Function is only carried out if the condition is fulfilled. The parameter is
intended to be a conditional switch. Thus the condition must not be

individual or household based, but refer to a specific processing state or
other global condition.

#_DataBasename text no

no (but
group
must

differ)

Parameter of query IsUsedDatabase.

Summary of parameters for function Restore
Sets variables back to some previous value (stored by function
Store).

Function Specific Parameters

Name Type Compulsory Unique Default
Mutually
exclusive
with

Description

PostLoop text yes (if PostFix
is not defined) yes PostFix

copy of stored variable is called varname_PostLoop
e.g. var1 = yem, postloop = lp: name of copies = yem_lp1 (1.

iteration), yem_lp2 (2. iteration), etc.

PostFix text
yes (if

PostLoop is
not defined)

yes PostLoop copy of stored variable is called varname_PostFix
e.g. var1 = yem, postfix = bkup: name of copy = yem_bkup

Iteration amount no yes most
recent

to be used with parameter PostLoop: variables are set back to
the value they had when function store was carried out in the

indicated iteration

Common Parameters
Name Type Compulsory Unique Description

Run_Cond condition no yes

Function is only carried out if the condition is fulfilled. The parameter is
intended to be a conditional switch. Thus the condition must not be

individual or household based, but refer to a specific processing state or
other global condition.

#_DataBasename text no

no (but
group
must

differ)

Parameter of query IsUsedDatabase.

Summary of parameters for function
ChangeParam
Allows for changing the values of parameters of other functions.
Note: to change the switches of policies or functions use
ChangeSwitch.

Function Specific Parameters
Name Type Group Compulsory Unique Description

Param_Id text PARAM within group within
group Identifier for the parameter to change.

Param_NewVal text PARAM within group within
group New value for parameter (to be exchanged at read time).

Dataset text no no

If any 'Dataset' parameter is used, the changes only takes place if one
of them matches the dataset of the concerned run.

The wildcards * and ? can be used, where * stands for any character
and ? stands for one arbitrary character (e.g. be_20*_a?).

Summary of parameters for function
ChangeSwitch
Allows for changing the switches of policies or functions.
This function is only available with EM3.

Function Specific Parameters
Name Type Group Compulsory Unique Description

PolFun text POL_FUN within group within
group

The name or identifier of the policy respectively the identifier or
symbolic-identifier (add-ons) of the function.

(See 'EUROMOD Functions - Identifiers and the placeholders =cc=
and =sys=' for information on identifiers.)

SwitchNewVal text POL_FUN within group within
group New switch of the policy/function.

Common Parameters
Name Type Compulsory Unique Description

Run_Cond condition no yes

Function is only carried out if the condition is fulfilled. The parameter is
intended to be a conditional switch. Thus the condition must not be

individual or household based, but refer to a specific processing state or
other global condition.

#_DataBasename text no

no (but
group
must

differ)

Parameter of query IsUsedDatabase.

Summary of parameters for function
CumulativeSum
A calculator for cumulative sums.

Function Specific Parameters
Name Type Compulsory Unique Default Description

SortingVar variable or
incomelist at least one no Variable or Incomelist based on which to sort

observations.

SortingAsc yes/no no no yes Whether sorting on this variable should be ascending
or not.

SummingVar variable or
incomelist yes yes The Variable or Incomelist to sum.

SummingWeighted yes/no no yes no Whether the sum should be weighted or not.

SummingAbsolute yes/no no yes yes Whether the summing should be absolute or relative.

OutputVar variable yes yes The output variable that will hold the cumulative
sum.

Common Parameters

Name Type Group Compulsory Unique Default
Mutually
exclusive
with

Description

Run_Cond condition no yes

Function is only carried out if the condition is
fulfilled. The parameter is intended to be a

conditional switch. Thus the condition must not be
individual or household based, but refer to a

specific processing state or other global condition.

TAX_UNIT taxunit yes yes Assessment unit for function's calculations.

Summary of parameters for function Totals
Allows for the calculation of aggregates of variables or incomelists
over the whole population or a selected subgroup.

Function Specific Parameters
Name Type Compulsory Unique Default Description

Varname_Sum text no yes

Name for variable to store
population sum of Agg_IL /

Agg_Var.
(e.g. if Varname_Sum = $sum
and Agg_Var = yem: sum is

stored in $sum_yem)

Varname_Mean text no yes

Name for variable to store
mean of Agg_IL / Agg_Var.

(e.g. if Varname_Mean =
$mean and Agg_Var = yem:

mean is stored in
$mean_yem)

Varname_Median text no yes

Name for variable to store
median of Agg_IL / Agg_Var.

(e.g. if Varname_Median =
$median and Agg_Var = yem:

median is stored in
$median_yem)

Varname_Decile text no yes

Name for variable to store
decile points of Agg_IL /

Agg_Var.
(e.g. if Varname_Decile =
$dec and Agg_Var = yem:
decile points are stored in

$dec1_yem, ..., $dec9_yem)

Varname_Quintile text no yes

Name for variable to store
quintile points of Agg_IL /

Agg_Var.
(e.g. if Varname_Quintile =
$quint and Agg_Var = yem:
decile points are stored in

$quint1_yem, ...,
$quint4_yem)

Varname_Count text no yes

Name for variable to store
Agg_IL / Agg_Var's count of

non-zero values.
(e.g. if Varname_Count =

$count and Agg_Var = yem:
count is stored in

$count_yem)

Varname_PosCount text no yes Name for variable to store
Agg_IL / Agg_Var's count of

positive values.
(e.g. if Varname_PosCount =
$poscnt and Agg_Var = yem,

count is stored in
$poscnt_yem)

Varname_NegCount text no yes

Name for variable to store
Agg_IL / Agg_Var's count of

negative values.
(e.g. if Varname_NegCount =
$negcnt and Agg_Var = yem:

count is stored in
$negcnt_yem)

Varname_Min text no yes

Name for variable to store
smallest value of Agg_IL /

Agg_Var.
(e.g. if Varname_Min = $min

and Agg_Var = yem:
minimum is stored in

$min_yem)

Varname_Max text no yes

Name for variable to store
largest value of Agg_IL /

Agg_Var.
(e.g. if Varname_Max = $max

and Agg_Var = yem:
maximum is stored in

$max_yem)

Agg variable or
incomelist at least one no Variable or incomelist for

which to calculate aggregates.

Incl_Cond condition no yes {1}

Condition that must be
fulfilled by the assessment

unit, as defined by
TAX_UNIT, to be taken into

account by the statistic.

Incl_Cond_Who categorical no yes all

Defines which members of
the assessment unit must

fulfil Incl_Cond to make the
unit fulfil the condition.

For possible values see the
common parameter

Who_Must_Be_Elig.

Use_Weights yes/no no yes yes If set to yes weights are used
to calculate the aggregates.

Weight_Var variable no yes dwt Specifies an alternative
weight variable.

WarnIfDuplicateDefinition bool no yes yes

This will suppress all
warnings due to

duplicate definition of
variables within this

incomelist.

Common Parameters
Name Type Group Compulsory Unique Default Description

TAX_UNIT taxunit yes yes Assessment unit for function's calculations.

Run_Cond condition no yes Function is only carried out if the condition
is fulfilled. The parameter is intended to be

a conditional switch. Thus the condition
must not be individual or household based,

but refer to a specific processing state or
other global condition.

#_LowLim formula no

no (but
group
must

differ)

-999999999999.99
Footnote parameter for the further

specification of an operand: replaces
operand if operand is smaller.

#_UpLim formula no

no (but
group
must

differ)

999999999999.99
Footnote parameter for the further

specification of an operand: replaces
operand if operand is higher.

#_LimPriority categorical no

no (but
group
must

differ)

upper

Footnote parameter for the further
specification of an operand:

Possible values:
If upper limit (#_UpLim) is smaller than

lower limit (#_LowLim) ...
- upper: ... upper limit dominates;
- lower: ... lower limit dominates;

- not defined: ... a warning is issued.

#_Amount amount no

no (but
group
must

differ)

Footnote parameter for the further
specification of an operand: indicates the

numeric value of an operand.

#_Level taxunit no

no (but
group
must

differ)

Footnote parameter for the further
specification of an operand: indicates an

alternative assessment unit for an operand.

#_AgeMin amount no

no (but
group
must

differ)

-999999999999 Parameter of several queries (e.g.
nDepChildrenInTu).

#_AgeMax amount no

no (but
group
must

differ)

999999999999 Parameter of several queries (e.g.
nDepChildrenInTu).

#_DataBasename text no

no (but
group
must

differ)

Parameter of query IsUsedDatabase.

#_N amount no

no (but
group
must

differ)

Parameter of query IsNtoMchild.

#_M amount no

no (but
group
must

differ)

Parameter of query IsNtoMchild.

#_Val variable or
incomelist no

no (but
group
must

differ)

Parameter of query HasMaxValInTu.

#_Income variable or
incomelist no

no (but
group
must

differ)

Parameter of several queries (e.g.
GetPartnerIncome).

#_Info variable no no (but
group

Parameter of several queries (e.g.
GetPartnerInfo).

must
differ)

#_Unique yes/no no

no (but
group
must

differ)

Parameter of query HasMaxValInTu.

#_Adults_Only yes/no no

no (but
group
must

differ)

Parameter of query HasMaxValInTu.

Summary of parameters for function
DropUnit
Allows for dropping individuals, families or households with special
characteristics from the calculations.

Function Specific Parameters
Name Type Compulsory Unique Default Description

Drop_Cond condition yes yes Condition defining which assessment units (i.e. indvidual,
families or households) are to be dropped.

Drop_Cond_Who categorical no yes one

Defines which members of the assessment unit must fulfil
Drop_Cond to make the unit fulfil the condition.
For possible values see the common parameter

Who_Must_Be_Elig.

Common Parameters
Name Type Group Compulsory Unique Default Description

Run_Cond condition no yes

Function is only carried out if the condition
is fulfilled. The parameter is intended to be

a conditional switch. Thus the condition
must not be individual or household based,

but refer to a specific processing state or
other global condition.

#_LowLim formula no

no (but
group
must

differ)

-999999999999.99
Footnote parameter for the further

specification of an operand: replaces
operand if operand is smaller.

#_UpLim formula no

no (but
group
must

differ)

999999999999.99
Footnote parameter for the further

specification of an operand: replaces
operand if operand is higher.

#_LimPriority categorical no

no (but
group
must

differ)

upper

Footnote parameter for the further
specification of an operand:

Possible values:
If upper limit (#_UpLim) is smaller than

lower limit (#_LowLim) ...
- upper: ... upper limit dominates;
- lower: ... lower limit dominates;

- not defined: ... a warning is issued.

#_Amount amount no

no (but
group
must

differ)

Footnote parameter for the further
specification of an operand: indicates the

numeric value of an operand.

#_Level taxunit no

no (but
group
must

differ)

Footnote parameter for the further
specification of an operand: indicates an

alternative assessment unit for an operand.

#_AgeMin amount no no (but -999999999999 Parameter of several queries (e.g.

group
must

differ)

nDepChildrenInTu).

#_AgeMax amount no

no (but
group
must

differ)

999999999999 Parameter of several queries (e.g.
nDepChildrenInTu).

#_DataBasename text no

no (but
group
must

differ)

Parameter of query IsUsedDatabase.

#_N amount no

no (but
group
must

differ)

Parameter of query IsNtoMchild.

#_M amount no

no (but
group
must

differ)

Parameter of query IsNtoMchild.

#_Val variable or
incomelist no

no (but
group
must

differ)

Parameter of query HasMaxValInTu.

#_Income variable or
incomelist no

no (but
group
must

differ)

Parameter of several queries (e.g.
GetPartnerIncome).

#_Info variable no

no (but
group
must

differ)

Parameter of several queries (e.g.
GetPartnerInfo).

#_Unique yes/no no

no (but
group
must

differ)

Parameter of query HasMaxValInTu.

#_Adults_Only yes/no no

no (but
group
must

differ)

Parameter of query HasMaxValInTu.

Summary of parameters for function
KeepUnit
Allows for keeping only individuals, families or households with
special characteristics within the calculations.

Function Specific Parameters
Name Type Compulsory Unique Default Description

Keep_Cond condition yes yes Condition defining which assessment units (i.e. individual,
families or households) are to be kept.

Keep_Cond_Who categorical no yes one

Defines which members of the assessment unit must fulfil
Keep_Cond to make the unit fulfil the condition.
For possible values see the common parameter

Who_Must_Be_Elig.

Common Parameters
Name Type Group Compulsory Unique Default Description

Run_Cond condition no yes

Function is only carried out if the condition
is fulfilled. The parameter is intended to be

a conditional switch. Thus the condition
must not be individual or household based,

but refer to a specific processing state or
other global condition.

#_LowLim formula no

no (but
group
must

differ)

-999999999999.99
Footnote parameter for the further

specification of an operand: replaces
operand if operand is smaller.

#_UpLim formula no

no (but
group
must

differ)

999999999999.99
Footnote parameter for the further

specification of an operand: replaces
operand if operand is higher.

#_LimPriority categorical no

no (but
group
must

differ)

upper

Footnote parameter for the further
specification of an operand:

Possible values:
If upper limit (#_UpLim) is smaller than

lower limit (#_LowLim) ...
- upper: ... upper limit dominates;
- lower: ... lower limit dominates;

- not defined: ... a warning is issued.

#_Amount amount no

no (but
group
must

differ)

Footnote parameter for the further
specification of an operand: indicates the

numeric value of an operand.

#_Level taxunit no

no (but
group
must

differ)

Footnote parameter for the further
specification of an operand: indicates an

alternative assessment unit for an operand.

#_AgeMin amount no no (but -999999999999 Parameter of several queries (e.g.

group
must

differ)

nDepChildrenInTu).

#_AgeMax amount no

no (but
group
must

differ)

999999999999 Parameter of several queries (e.g.
nDepChildrenInTu).

#_DataBasename text no

no (but
group
must

differ)

Parameter of query IsUsedDatabase.

#_N amount no

no (but
group
must

differ)

Parameter of query IsNtoMchild.

#_M amount no

no (but
group
must

differ)

Parameter of query IsNtoMchild.

#_Val variable or
incomelist no

no (but
group
must

differ)

Parameter of query HasMaxValInTu.

#_Income variable or
incomelist no

no (but
group
must

differ)

Parameter of several queries (e.g.
GetPartnerIncome).

#_Info variable no

no (but
group
must

differ)

Parameter of several queries (e.g.
GetPartnerInfo).

#_Unique yes/no no

no (but
group
must

differ)

Parameter of query HasMaxValInTu.

#_Adults_Only yes/no no

no (but
group
must

differ)

Parameter of query HasMaxValInTu.

Summary of parameters for function
IlArithOp
Allows for an operation, using the variables of one or more analogue
input-incomelists, and writing the results to variables of an analogue
output-incomelist.
The variables included in the calculations are specified by the
incomlist defined by parameter 'Base_ILName'.
The operation carried out is defined by parameter 'Formula' and
allows for three types of placeholders:

BASE_IL_COMPONENT refers to a variable in the incomelist
defined by parameter 'Base_ILName'
IL_COMPONENT[il-identifier] refers to a variable in the
incomelist defined by parameter 'ILName'. As this parameter is
not unique [il-identifier] indicates the name of the incomelist or
the group-number.
The variable within the incomelist corresponds to the variable in
the incomelist defined by 'Base_ILName' in the sense that they
share the core-name. This is the variable-name without the
corresponding prefix (parameters 'Base_Prefix'/'Prefix') and
postfix (parameters 'Base_Postfix'/'Postfix').
OUT_IL_COMPONENT refers to a variable in the incomelist
defined by parameter 'Out_ILName'.
Using this placeholder requires the incomelist defined by
'Out_ILName' to exist before the IlArithOp is carried out (usually
it is generated by another IlArithOp).
The variable within the incomelist corresponds to the variable in
the incomelist defined by 'Base_ILName' in the sense that they
share the core-name.

The results are written to the variables of the incomelist defined by
'Out_ILName'.

If this incomelist exists before the IlArithOp is carried out, variables
are overwritten.
If it does not exist, it is generated. The content is formed by the, also
generated, variables which hold the results of the calculations.

See The special function IlArithOp) for a complete and more detailed
explanation.

Function Specific Parameters
Name Type Group Compulsory Unique Default Description

Base_ILName incomelist yes yes Incomelist specifying the variables on which
the arithmetic operation takes place.

Base_Prefix text

yes (if
Base_Postfix

is not
defined)

yes All variables in (decomposed) incomelist
'Base_ILName' must start with this prefix.

Base_Postfix text

yes (if
Base_Prefix

is not
defined)

yes All variables in (decomposed) incomelist
'Base_ILName' must end with this postfix.

ILName incomelist IL within group within
group

Additional incomelist containing variables
used in the arithmetic operation (referred to

by IL_COMPONENT).

Prefix text IL
within group
(if Postfix is
not defined)

within
group

All variables in (decomposed) incomelist
'ILName' with same group must start with this

prefix.

Postfix text IL
within group
(if Prefix is
not defined)

within
group

All variables in (decomposed) incomelist
'ILName' with same group must end with this

postfix.

Formula formula yes yes

Arithmetic operation to be performed,
allowing for placeholders

'BASE_IL_COMPONENT',
'IL_COMPONENT[il-identifier]' and

'OUT_IL_COMPONENT'.

Out_ILName text yes yes Name of the incomelist to contain the result
variables. Will be created if it does not exist.

Out_Prefix text

yes (if
Out_Postfix

is not
defined)

yes

All variables in incomelist 'Out_ILName'
must start with this prefix, if the incomelist
exists; if not they will be created with this

prefix.

Out_Postfix text

yes (if
Out_Prefix

is not
defined)

yes

All variables in incomelist 'Out_ILName'
must end with this postfix, if the incomelist
exists; if not they will be created with this

postfix.

WarnIfDuplicateDefinition bool no yes yes
This will suppress all warnings due to

duplicate definition of variables within this
incomelist.

ForceMonetaryOutput bool no yes no
Force the resulting new variables to be

monetary, even if the base variables were non-
monetary.

Common Parameters
Name Type Group Compulsory Unique Default Description

Run_Cond condition no yes

Function is only carried out if the condition
is fulfilled. The parameter is intended to be

a conditional switch. Thus the condition
must not be individual or household based,

but refer to a specific processing state or
other global condition.

#_LowLim formula no

no (but
group
must

differ)

-999999999999.99
Footnote parameter for the further

specification of an operand: replaces
operand if operand is smaller.

#_UpLim formula no

no (but
group
must

differ)

999999999999.99
Footnote parameter for the further

specification of an operand: replaces
operand if operand is higher.

#_LimPriority categorical no

no (but
group
must

differ)

upper

Footnote parameter for the further
specification of an operand:

Possible values:
If upper limit (#_UpLim) is smaller than

lower limit (#_LowLim) ...
- upper: ... upper limit dominates;
- lower: ... lower limit dominates;

- not defined: ... a warning is issued.

#_Amount amount no

no (but
group
must

differ)

Footnote parameter for the further
specification of an operand: indicates the

numeric value of an operand.

#_Level taxunit no

no (but
group
must

differ)

Footnote parameter for the further
specification of an operand: indicates an

alternative assessment unit for an operand.

#_AgeMin amount no

no (but
group
must

differ)

-999999999999 Parameter of several queries (e.g.
nDepChildrenInTu).

#_AgeMax amount no

no (but
group
must

differ)

999999999999 Parameter of several queries (e.g.
nDepChildrenInTu).

#_DataBasename text no

no (but
group
must

differ)

Parameter of query IsUsedDatabase.

#_N amount no

no (but
group
must

differ)

Parameter of query IsNtoMchild.

#_M amount no

no (but
group
must

differ)

Parameter of query IsNtoMchild.

#_Val variable or no no (but Parameter of query HasMaxValInTu.

incomelist group
must

differ)

#_Income variable or
incomelist no

no (but
group
must

differ)

Parameter of several queries (e.g.
GetPartnerIncome).

#_Info variable no

no (but
group
must

differ)

Parameter of several queries (e.g.
GetPartnerInfo).

#_Unique yes/no no

no (but
group
must

differ)

Parameter of query HasMaxValInTu.

#_Adults_Only yes/no no

no (but
group
must

differ)

Parameter of query HasMaxValInTu.

Summary of parameters for function IlVarOp
Allows for operations on the content (i.e. the variables) of an
incomelist.

Function Specific Parameters
Name Type Compulsory Unique Default Mutually

exclusive with Description

Operand formula
yes (if no

substitute is
defined)

yes Operand_Factors,
Operand_IL

Variables of Operator_IL are
multiplied/increased by operand.

Example:
Operator_IL = ils_earns = { yem / yse }

Operand = 2.5
All other parameters are set to their defaults.

Result: yem = yem * 2.5, yse = yse * 2.5

Operand_Factors yes/no
yes (if no

substitute is
defined)

yes no Operand,
Operand_IL

Variables of Operator_IL are
multiplied/increased by factors of

Operator_IL.
Example:

Operator_IL = ils_earns_mul = { 3 yem / -2
yse }

Operand_Factors = yes
All other parameters are set to their defaults.

Result: yem = yem * 3, yse = yse * (-2)

Operand_IL formula
yes (if no

substitute is
defined)

yes Operand,
Operand_Factors

Variables of Operator_IL are
multiplied/increased by variables of

Operand_IL.
Example:

Operator_IL = ils_earns = { yem / yse }
Operand_IL = il_multiply = { poa / yiy }

All other parameters are set to their defaults.
Result: yem = yem * poa, yse = yse * yiy

Operator_IL incomelist yes yes Incomelist containing the variables on which
the operation takes place.

Operation categorical no yes MUL

Possible values:
- MUL: variables of Operator_IL are

multiplied by Operand.
- ADD: variables of Operator_IL are

increased by Operand.
- NEGTOZERO: negative variables of

Operator_IL are set zo zero, postive
variables keep their value.

Sel_Var categorical no yes ALL

Possible values:
ALL: operation takes place on all variables

of Operator_IL.
MAX: operation takes place on the highest

variable of Operator_IL.
MIN: operation takes place on the smallest

variable of Operator_IL.
MINPOS: operation takes place on the

smallest positive variable of Operator_IL (no
operation occurs, if there is no positive

variable).

Common Parameters
Name Type Group Compulsory Unique Default Description

Run_Cond condition no yes

Function is only carried out if the
condition is fulfilled. The parameter is

intended to be a conditional switch. Thus
the condition must not be individual or
household based, but refer to a specific

processing state or other global
condition.

Who_Must_Be_Elig categorical no yes nobody

Function's calculations are carried out if
...

- one (one_member): ... one member of
the assessment unit is "eligible"

- one_adult: ... one adult member of the
assessment unit is "eligible"

- all (all_members; taxunit): ... all
members of the assessment unit are

"eligible"
- all_adults: ... all adult members of the

assessment unit are eligible
- nobody: ... always

"eligible" is determined by the variable
indicated by parameter Elig_Var

Elig_Var variable no yes sel_s

Variable indicating whether a person is
"eligible" (see parameter

Who_Must_Be_Elig):
- zero: person is not eligible
- non zero: person is eligible

#_LowLim formula no

no (but
group
must

differ)

-999999999999.99
Footnote parameter for the further

specification of an operand: replaces
operand if operand is smaller.

#_UpLim formula no

no (but
group
must

differ)

999999999999.99
Footnote parameter for the further

specification of an operand: replaces
operand if operand is higher.

#_LimPriority categorical no

no (but
group
must

differ)

upper

Footnote parameter for the further
specification of an operand:

Possible values:
If upper limit (#_UpLim) is smaller than

lower limit (#_LowLim) ...
- upper: ... upper limit dominates;
- lower: ... lower limit dominates;

- not defined: ... a warning is issued.

#_Amount amount no

no (but
group
must

differ)

Footnote parameter for the further
specification of an operand: indicates the

numeric value of an operand.

#_Level taxunit no

no (but
group
must

differ)

Footnote parameter for the further
specification of an operand: indicates an

alternative assessment unit for an
operand.

#_AgeMin amount no

no (but
group
must

differ)

-999999999999 Parameter of several queries (e.g.
nDepChildrenInTu).

#_AgeMax amount no no (but
group
must

differ)

999999999999 Parameter of several queries (e.g.
nDepChildrenInTu).

#_DataBasename text no

no (but
group
must

differ)

Parameter of query IsUsedDatabase.

#_N amount no

no (but
group
must

differ)

Parameter of query IsNtoMchild.

#_M amount no

no (but
group
must

differ)

Parameter of query IsNtoMchild.

#_Val variable or
incomelist no

no (but
group
must

differ)

Parameter of query HasMaxValInTu.

#_Income variable or
incomelist no

no (but
group
must

differ)

Parameter of several queries (e.g.
GetPartnerIncome).

#_Info variable no

no (but
group
must

differ)

Parameter of several queries (e.g.
GetPartnerInfo).

#_Unique yes/no no

no (but
group
must

differ)

Parameter of query HasMaxValInTu.

#_Adults_Only yes/no no

no (but
group
must

differ)

Parameter of query HasMaxValInTu.

Summary of parameters for function
RandSeed
Sets the starting point for generating a series of pseudorandom
numbers.

Function Specific Parameters
Name Type Compulsory Unique Default Description
Seed amount no yes 1 Integer value as starting point for random number generation.

Summary of parameters for function
CallProgramme
Allows for calling an external application.
Note that the function is only available under Windows as it uses
platform specific code.

Function Specific Parameters
Name Type Compulsory Unique Default Description

Programme text yes yes Name of the application to be called.
Example: Excel.exe

Path text no yes

Path to the application.
Dispensable if the application is installed at the standard path for

programmes.
However, note that the path is also used as the working directory for

the application.
Example: C:\Program Files\Microsoft Office\

Note that spaces can be used without encapsulating the path by ".

Argument text no no
Programme argument to be passed to the application.

Example: C:\EuromodFiles\Tools\EMT_FillTemplate.xls (to e.g. open
Excel with this workbook)

UnifySlash yes/no no yes yes If set to yes all occurrences of / are replaced by \ in parameters Path
and Argument.

Wait yes/no no yes no
If set to yes: EUROMOD calculations are stopped until the called

programme terminates.
If set to no: EUROMOD calculations continue without waiting.

RepByEMPath text no yes ..\

Any occurrences of RepByEMPath in parameters Path, and Argument
are replaced by the path of the current EUROMOD content (see

EUROMOD Installation and Architecture).
Example: RepByEMPath = &, Argument = &Tools\SomeFile.xls,

EUROMOD content is stored at C:\EuromodFiles\
Result: Argument is interpreted as

C:\EuromodFiles\Tools\SomeFile.xls.

Remark: Technically the programme obtains knowledge about the path
of the EUROMOD content via the parameter EMCONTENTPATH in
the configuration file (see EUROMOD Installation and Architecture -

EUROMOD software (user interface and executable) - The
configuration file).

Summary of parameters for function
DefInput
Allows for reading values for one or more EUROMOD variables from
a text file.

Function Specific Parameters
Name Type Compulsory Unique Default Description
path text yes yes Path of the input file.

file text yes yes Name of the input file.

RowMergeVar variable yes yes

ColMergeVar != n/a means 'lookup mode', i.e. one EUROMOD
variable (per person) is set to a specific value looked up in the
input file. The variable is defined by InputVar. Which value is

looked up depends on the person's value of the variable defined
by RowMergeVar as well as the person's value of the variable
defined by ColMergeVar. The lookup value is the value of the

cell whose row and column headers in the input file coincide with
these variables.

ColMergeVar = n/a means 'input mode', i.e. one or more

EUROMOD variables (per person) are set to values defined in a
specific row of the input file. The header row of the input file

names the respective variables, while the other rows contain their
values in the same order. One of these variables must be the

variable defined by RowMergeVar. The row selected for a person
is the one where the person's value of RowMergeVar coincides
with the value of this variable in the input file. Note that, other

than for the 'lookup mode', the RowMergeVar does not need to be
located in the first column of the input file.

Note that the variables inputted in 'input mode' as well as the
variable defined by InputVar must exist, i.e. be defined in the

variables file or by EUROMOD functions (e.g. DefVar).

ColMergeVar variable no yes See description of parameter RowMergeVar.

InputVar variable no yes See description of parameter RowMergeVar.

DefaultIfNoMatch amount no yes

Input variable(s) are set to this value if no match can be
established.

If not defined an error message is issued if no match can be
established.

IgnoreNRows amount no yes 0 The first n rows of the input file are ignored (e.g. because they
contain descriptions or headings).

IgnoreNCols amount no yes 0 The first n columns of the input file are ignored (e.g. because
they contain descriptions or headings).

DecSepComma yes/no no yes no If set to yes, input file is assumed to use comma as decimal
separator otherwise point.

DoRanges yes/no no yes no If set to yes, matches are established by considering
RowMergeVar and ColMergeVar in the input file as upper limits.

Example: RowMergeVar dag in the input file set to 10, 30, 70,
150

Interpretation:

all persons aged up to 10 (including) are assigned the value of the
10-column,

all persons aged older than 10 up to 30 are assigned the value of
the 30-column,

all persons aged older than 30 up to 70 are assigned the value of
the 70-column,

all persons aged older than 70 up to 150 are assigned the value of
the 150-column,

no match is found for anyone older than 150.

RepByEMPath text no yes

Any occurrences of RepByEMPath in parameter Path are
replaced by the path of the current EUROMOD content (see

EUROMOD Installation and Architecture).
Example: RepByEMPath = &, Path = &Tools\SomeFile.xls,

EUROMOD content is stored at C:\EuromodFiles\
Result: Path is interpreted as

C:\EuromodFiles\Tools\SomeFile.xls.

Note that this parameter is only available under Windows as it
uses platform specific functions.

Remark: Technically the programme obtains knowledge about the

path of the EUROMOD content via the parameter
EMCONTENTPATH in the configuration file (see EUROMOD

Installation and Architecture - EUROMOD software (user
interface and executable) - The configuration file).

Summary of parameters for function Scale
Allows for scaling monetary variables and monetary parameters.
This function is only available with EM3.

Function Specific Parameters
Name Type Compulsory Unique Default Description

FactorVariables amount no yes n/a

All monetary variables are multiplied by this factor.
The operation concerns all monetary variables existing at the time

of execution (i.e. used before).
If the function is part of a loop, the scaling is done in each iteration.

FactorParameter amount no yes n/a

All monetary parameters are multiplied by this factor.
Monetary parameters are identified by having a period (#m, #y, etc).

Rates (#mr, #yr, etc.) are considered non-monetary.
The operation concerns all parameters defined after the Scale
function. Loops have no effect (i.e. the scaling is done once).

Note that the factor is always applied on the original parameter
values. Thus a subsequent Scale with e.g. FactorParameter 0.5 after
a Scale with FactorParameter 0.3 would not result in a factor 0.15,

but 0.5 is applied.
Consequently a FactorParameter 1 undoes all scaling.

Summary of parameters for function
AddHHMembers
Allows for adding persons to households.
This function is only available with EM3.

Function Specific Parameters
Name Type Compulsory Unique Default Description

Add_Who categorical yes yes
Defines whether children or partners or other persons are

added.
Possible values: 'Child', 'Partner', 'Other'.

ParentCond condition yes, if
Add_Who=Child yes

Condition a person must fulfill to be a parent (i.e. a child is
added for the person).

Only relevant if Add_Who=Child.

PartnerCond condition yes, if
Add_Who=Partner yes

Condition a person must fulfill to be a partner (i.e. a partner
is added for the person).

Only relevant if Add_Who=Partner.

HHCond condition yes, if
Add_Who=Other yes

Condition the household must fulfill for adding a new
person.

Only relevant if Add_Who=Other.

IsPartnerParent yes/no no yes yes
If yes, the partner of the new parent (person fulfilling
ParentCond) gets the other parent of the added child.

Only relevant if Add_Who=Child.

[Placeholder] formula no no

[Placeholder] stands for the name of the variable, which is
defined in the policy column.

Variable's initial value for the new person is set in system-
column.

FlagVar variable no yes

If indicated, variable is set to 1 for persons added by this
AddHHMembes function.

Note that the variable must exist.
Also note that the variable is not changed for any other

persons (thus it can e.g. be used to hold the flag for more
than one AddHHMembers functions).

Common Parameters
Name Type Group Compulsory Unique Default Description

Run_Cond condition no yes

Function is only carried out if the condition
is fulfilled. The parameter is intended to be

a conditional switch. Thus the condition
must not be individual or household based,

but refer to a specific processing state or
other global condition.

#_LowLim formula no

no (but
group
must

differ)

-999999999999.99
Footnote parameter for the further

specification of an operand: replaces
operand if operand is smaller.

#_UpLim formula no no (but 999999999999.99 Footnote parameter for the further

group
must

differ)

specification of an operand: replaces
operand if operand is higher.

#_LimPriority categorical no

no (but
group
must

differ)

upper

Footnote parameter for the further
specification of an operand:

Possible values:
If upper limit (#_UpLim) is smaller than

lower limit (#_LowLim) ...
- upper: ... upper limit dominates;
- lower: ... lower limit dominates;

- not defined: ... a warning is issued.

#_Amount amount no

no (but
group
must

differ)

Footnote parameter for the further
specification of an operand: indicates the

numeric value of an operand.

#_Level taxunit no

no (but
group
must

differ)

Footnote parameter for the further
specification of an operand: indicates an

alternative assessment unit for an operand.

#_AgeMin amount no

no (but
group
must

differ)

-999999999999 Parameter of several queries (e.g.
nDepChildrenInTu).

#_AgeMax amount no

no (but
group
must

differ)

999999999999 Parameter of several queries (e.g.
nDepChildrenInTu).

#_DataBasename text no

no (but
group
must

differ)

Parameter of query IsUsedDatabase.

#_N amount no

no (but
group
must

differ)

Parameter of query IsNtoMchild.

#_M amount no

no (but
group
must

differ)

Parameter of query IsNtoMchild.

#_Val variable or
incomelist no

no (but
group
must

differ)

Parameter of query HasMaxValInTu.

#_Income variable or
incomelist no

no (but
group
must

differ)

Parameter of several queries (e.g.
GetPartnerIncome).

#_Info variable no

no (but
group
must

differ)

Parameter of several queries (e.g.
GetPartnerInfo).

#_Unique yes/no no

no (but
group
must

differ)

Parameter of query HasMaxValInTu.

#_Adults_Only yes/no no no (but
group

Parameter of query HasMaxValInTu.

must
differ)

Summary of parameters for function Break
Allows the user to break the run at any point inside the spine.
This function is only available with EM3.

Function Specific Parameters
Name Type Compulsory Unique Default Description

ProduceOutput yes/no no yes yes

If yes, all variables and incomelists are dumped in an
output file.

Note that dumping incomelists is likely to lead to warnings
("... use of not initialised variable ...").

OutputFileName text no yes
name of first

output-file after
the Break

Specifies the name of the output file.
If not indicated or n/a the program searches for the first

DefOutput after the Break and takes the name from there
(parameter File).

The path is defined as usual for DefOutput (i.e. via the User
Interface respectively the configuration file).

ProduceTUinfo yes/no no yes no
If true, TU info is dumped to the output file for each TU

defined before the Break (see DefOuput UnitInfo-
parameters).

Summary of parameters for function
AddOn_Applic
Add-on function: Provides a short description of the add-on and
specifies for which systems the add-on is applicable.

Function Specific Parameters
Name Type Compulsory Unique Description

Description text yes yes A short description of the add-on (amongst others to be displayed by the run-tool).

Sys text at least one no
Name of (a) system(s) for which the add-on is applicable.

Wildcards * and ? can be used, where * stands for any character and ? stands for one
arbitrary character (e.g. *_200?).

SysNA text no no

Name of (a) system(s) for which the add-on is not applicable.
Note that not applicability prevails over applicability (i.e. SysNA is stronger than

Sys).
Wildcards * and ? can be used, where * stands for any character and ? stands for one

arbitrary character (e.g. ??_2005).

Summary of parameters for function
AddOn_Pol
Add-on function: Allows for adding a policy.

Function Specific Parameters
Name Type Compulsory Unique Default Mutually

exclusive with Description

Pol_Name text yes yes Name of the policy to insert (must be
unique).

Insert_Before_Pol text
yes (if

Insert_After_Pol
is not defined)

yes Insert_After_Pol Name of the policy before which the add-
on policy should be inserted.

Insert_After_Pol text
yes (if

Insert_Before_Pol
is not defined)

yes Insert_Before_Pol Name of the policy after which the add-on
policy should be inserted.

Allow_Duplicates yes/no yes yes no

If set to no: adding a policy twice (i.e.
Pol_Name identical) leads to an error

message.
If set to yes: adding a policy twice works,
but "references" cannot be used, i.e. the

usage of functions like ChangeParam and
Loop is not possible.

Summary of parameters for function
AddOn_Func
Add-on function: Allows for adding a function.

Function Specific Parameters
Name Type Compulsory Unique Mutually exclusive

with Description

Id_Func text yes yes

Identifier of the function to insert.
(See 'EUROMOD Functions - Identifiers and

the placeholders =cc= and =sys=' for
information on identifiers.)

Insert_Before_Func text
yes (if

Insert_After_Func is
not defined)

yes Insert_After_Func

Identifier of the function before which the
add-on function should be inserted.

(See 'EUROMOD Functions - Identifiers and
the placeholders =cc= and =sys=' for

information on identifiers.)

Insert_After_Func text
yes (if

Insert_Before_Func
is not defined)

yes Insert_Before_Func

Identifier of the function after which the add-
on function should be inserted.

(See 'EUROMOD Functions - Identifiers and
the placeholders =cc= and =sys=' for

information on identifiers.)

Summary of parameters for function
AddOn_Par
Add-on function: Allows for adding parameters.

Function Specific Parameters
Name Type Compulsory Unique Description

Insert_Func text yes yes
Identifier of the function into which the parameter should be inserted.

(See 'EUROMOD Functions - Identifiers and the placeholders =cc= and =sys=' for
information on identifiers.)

[Placeholder] text no no
[Placeholder] stands for the name of the parameter to insert, defined in the policy
column. The value of the parameter is specified in the respective system column

(i.e. the may be system specific).

Summary of parameters for function
AddOn_ExtensionSwitch
Add-on function: Allows add-ons to switch extensions on or off.
This function is only available with EM3.

Function Specific Parameters
Name Type Compulsory Unique Mutually

exclusive with Description

Extension_Name text
yes (if

Extension_Id is
not defined

yes Extension_Id Name of the extension (long- and short name can be
used) e.g. 'benefit take-up adjustments' or 'BTA'.

Extension_Id text
yes (if

Extension_Name
is not defined)

yes Extension_Name Identifier of the extension (look up in XML or use
Extension_Name instead).

Extension_Switch on/off yes yes Whether this extension should be turned on or off.

Dataset text no no

If any 'Dataset' parameter is used (several can be used
within one group), the setting is only applied if one of

them matches the dataset of the concerned run. The
wildcards * and ? can be used, where * stands for any
character and ? stands for one arbitrary character (e.g.

be_20*_a?).

System text no no

If any 'System' parameter is used (several can be used
within one group), the setting is only applied if one of

them matches the system of the concerned run. The
wildcards * and ? can be used, where * stands for any
character and ? stands for one arbitrary character (e.g.

be_20??).

The formula/condition syntax
Formula here refers to any parameter of type "formula" or indeed
"condition" in any EUROMOD function, such as "Formula" in
ArithOp, "Elig_Cond" in Elig, "Base" or "Comp_perTU" in BenCalc
etc. The only difference between a formula and a condition is that
the formula will return the calculated value, while the condition will
return false if the value is 0 and true for all other values.

The formula or condition allows for the following operations:

addition: operator +
subtraction: operator -
multiplication: operator *
division: operator /
remainder of division: operator \, e.g. 22\5 (result: 2)
raising to a power: operator ^, e.g. 2 ^ 3 (result: 8)
percentage: operator %, e.g. yem*3% (result: yem*(3/100))
minimum and maximum: operators <min> and <max>, e.g. 10
<min> 15 (result: 10) (deprecated in EM3)
absolute value: operator <abs>(), e.g. <abs>(-22) (result: 22),
<abs>(50-70) (result: 20) (deprecated in EM3)
negation: operator !, e.g. !IsMarried, !(17) (result: 0), !(0) (result:
1)
logical operators: operators & and |, e.g. IsMarried &
IsUnemployed | IsDisabled
comparison operators: operators <, >, =, <=, >=, !=, e.g. dag >=
18 (true translates to 1 and false to 0)

and the following inline functions:

ABS(1): Absolute value, e.g. abs(-22) (result: 22), abs(50-70)
(result: 20) (only available in EM3)
MIN(2): Minimum value, e.g. min(10, 15) (result: 10) (only
available in EM3)
MAX(2): Maximum value, e.g. max(10, 15) (result: 15) (only
available in EM3)
LN(1): Natural logarithm, e.g. ln(10) (result: 2.30258509299)
(only available in EM3)
LOG(1-2): Logarithm, e.g. log(10, 3) (result: 1.01283722471),
log(10) (result: 1) (only available in EM3)
LOG10(1): Logarithm base 10, e.g. LOG10(10) (result: 1) (only
available in EM3)
EXP(1): Exponential, e.g. exp(3.14) (result: 23.1038668587
(only available in EM3)
SQRT(1): Square root, e.g. sqrt(4) (result: 2) (only available in
EM3)
CEILING(1): Ceiling value, e.g. ceiling(3.1) (result: 4),
ceiling(3.9) (result: 4) (only available in EM3)
FLOOR(1):Floor value, e.g. floor(3.1) (result: 3), floor(3.9)
(result: 3) (only available in EM3))
ROUND(1-2):Round value, e.g. round(3.1) (result: 3), round(3.9)
(result: 4), round(3.375, 2) (result: 3.38) (only available in EM3)
POWER(2): Raising to a power, e.g. power(2, 3) (result: 8) (only
available in EM3)
IF(3): Performs a conditional calculation in the format of
"if(<condition>,<value if true>,<value if false>)", e.g. if(b=0, 0,
a/b) (result: avoid getting a "division by zero" warning if b=0)
(only available in EM3)

to be used with the following operands:

numeric values, e.g. 10, 0.3, -25
numeric values with a period, e.g. 12000#m, 1000#y (see
EUROMOD Functions - Types of parameter values)
amount#i as place holders for numeric values specified by
footnote parameters (see EUROMOD Functions - Footnote
parameters for the further specification of operands)
variables, e.g. yem (see EUROMOD Basic Concepts -
EUROMOD terminology)
incomelists, e.g. ils_dispy (see EUROMOD Basic Concepts -
EUROMOD terminology)
queries, e.g. IsUnemployed (see EUROMOD Functions -
Queries)
random numbers, i.e. rand (see EUROMOD Functions - The
special function RandSeed)

The order of operation rules are:

variables, literals, percentage %
before parenthesis (), inline functions
before <min>, <max>, <abs>, !
before power ^
before multiplicative operations *, /, \
before additive operations +, -
before comparison operations <, >, =, <=, >=, !=
before logical and &
before logical or |

Queries
Query Description Parameters Aliases

IsHeadOfTu

Returns 1 if a person is the 'Head' of the
assessment unit, i.e. fulfils the fixed head
condition and the ExtHeadCond of the
assessment unit specification, 0 otherwise.
See the (summary) description of function
DefTU for further details.

IsHead

IsPartner

Returns 1 if a person is the 'Partner' of the
assessment unit, i.e. fulfils the PartnerCond
of the assessment unit specification, 0
otherwise.
See the (summary) description of function
DefTU for further details.

IsPartnerOfHeadOfTu

IsDepChild

Returns 1 if a person is a 'dependent child',
i.e. fulfils the DepChildCond of the
assessment unit specification, 0 otherwise.
See the (summary) description of function
DefTU for further details.

IsDependentChild

IsOwnChild

Returns 1 if a person is an 'own child', i.e.
fulfils the OwnChildCond of the assessment
unit specification, 0 otherwise.
See the (summary) description of function
DefTU for further details.

IsOwnDepChild

Returns 1 if a person is an 'own dependent
child', i.e. fulfils the OwnDepChildCond of
the assessment unit specification, 0
otherwise.
See the (summary) description of function
DefTU for further details.

IsOwnDependentChild

IsLooseDepChild

Returns 1 if a person is a 'loose dependent
child', i.e. fulfils the LooseDepChildCond of
the assessment unit specification, 0
otherwise.
See the (summary) description of function
DefTU for further details.

IsLooseDependentChild

IsDepParent

Returns 1 if a person is a 'dependent parent',
i.e. fulfils the DepParentCond of the
assessment unit specification, 0 otherwise.
See the (summary) description of function
DefTU for further details.

IsDependentParent
IsDepPar

IsDepRelative

Returns 1 if a person is a 'dependent
relative', i.e. fulfils the DepRelativeCond of
the assessment unit specification, 0
otherwise.
See the (summary) description of function
DefTU for further details.

IsDependentRelative
IsDepRel

IsLoneParentOfDepChild

Returns 1 if a person is a 'lone parent', i.e.
fulfils the LoneParentCond of the
assessment unit specification, 0 otherwise.
See the (summary) description of function
DefTU for further details.

IsSingleParentOfDepChild

IsMarried Returns 1 if a person is married, i.e. variable
dms = 2, 0 otherwise.

IsCohabiting Returns 1 if a person has a partner, i.e.
variable idpartner > 0, and is not married,
i.e. variable dms != 2, 0 otherwise.

IsWithPartner
Returns 1 if a person has a partner, i.e.
variable idpartner > 0, irrespective of being
married, i.e. the variable dms, 0 otherwise.

IsInEducation
Returns 1 if a person is in education, i.e.
variable dec > 0 and variable les = 6, 0
otherwise.

IsDisabled

Returns 1 if a person is disabled, i.e. variable
ddi > 0. If ddi does not exist, ddilv is used
and a respective warning is issued. If neither
ddi nor ddilv exist the query is ignored
(person is considered not disabled) and a
respective warning issued.

IsCivilServant Returns 1 if a person is a civil servant, i.e.
variable lcs = 1, 0 otherwise

IsBlueColl

Returns 1 if a person is a blue-collar worker,
i.e. variable loc = 6 (skilled agriculture) or 7
(craft worker) or 8 (plant operator) or 9
(elementary occupation) or 0 (armed force),
0 otherwise.

IsParent

Returns 1 if this person or its partner has at
least one child, i.e. idMother[child] =
idPerson[person] or idFather[child] =
idPerson[person] or idMother[child] =
idPartner[person] or idFather[child] =
idPartner[person], 0 otherwise.
Note that the query is independent of any
assessment unit definition (e.g. as there is no
child definition, 'children' have no age limit).

IsParentOfDepChild

Returns 1 if:

either at least one 'own dependant
child' of the person or its partner
belongs to the assessment unit

or at least one 'loose dependent
child' belongs to the assessment unit
and the person is 'Head' or 'Partner'

where:

for being an 'own dependent child'
query IsDepChild must apply

for being a 'loose dependent child'
query IsLooseDepChild must apply

for being 'Head' query IsHead must
apply

for being 'Partner' query IsPartner
must apply

0 otherwise.

IsLoneParent Is equivalent to IsParent & !IsWithPartner. IsLonePar
IsSingleParent

IsSinglePar

nChildrenOfCouple#x

Returns the number of a couple's children.

For a specific assessment unit 'couple's
children' must fulfil each of the following
three conditions:

1. idMother[child] = idPerson[Head]
or idMother[child] =
idPartner[Head] or idFather[child] =
idPerson[Head] or idFather[child] =
idPartner[Head]

2. dag[child] >= parameter #_AgeMin

3. dag[child] <= parameter #_AgeMax

where

for being 'Head' query IsHead must
apply

the head's 'Partner' does not have to
be in the same assessment unit

Note that children of the whole household
are counted (not just children belonging to
the assessment unit) and that no assessment
unit specific child definition is applied.

#_AgeMin;
optional
#_AgeMax;
optional

nChOfCouple

nDepChildrenOfCouple#x Returns the number of a couple's dependent
children.

For a specific assessment unit 'couple's
dependent children' must fulfil each of the
following five conditions:

1. query IsDepChild or query
IsLooseDepChild applies

2. child is part of the assessment unit

3. idMother[child] = idPerson[Head]
or idMother[child] =
idPerson[Partner] or idFather[child]
= idPerson[Head] or idFather[child]
= idPerson[Partner] or
idMother[child] = idFather[child] =
0

4. dag[child] >= parameter #_AgeMin

5. dag[child] <= parameter #_AgeMax

where:

for being 'Head' query IsHead must
apply

for being 'Partner' query IsPartner
must apply

#_AgeMin;
optional
#_AgeMax;
optional

nDepChOfCouple

nPersInUnit#x
Returns the number of persons in the
assessment unit who fulfil dag >= parameter
#_AgeMin and dag<=#_AgeMax.

#_AgeMin;
optional
#_AgeMax;
optional

npersonsintu
nPersonsInTaxunit
nPersInTu
nPersTaxunit

nAdultsInTu#x

Returns the number of adults in the
assessment unit who fulfil dag >= parameter
#_AgeMin and dag <= parameter
#_AgeMax.
For being counted as adult the query
IsDepChild must not apply.

#_AgeMin;
optional
#_AgeMax;
optional

nAdultsInTaxunit

nDepChildrenInTu#x

Returns the number of dependent children in
the assessment unit who fulfil dag >=
parameter #_AgeMin and dag <= parameter
#_AgeMax.
For being counted as dependent child the
query IsDepChild must apply.

#_AgeMin;
optional
#_AgeMax;
optional

nDepChInTu
nDepChildrenInTaxunit
nDepChInTaxunit

nLooseDepChildrenInTu

Returns the number of loose dependent
children in the assessment unit.
For being counted as loose dependent child
the query IsLooseDepChild must apply.

nLooseDepChInTu
nLooseDepChildrenInTaxunit
nLooseDepchInTaxunit

nDepParentsInTu

Returns the number of dependent parents in
the assessment unit.
For being counted as dependent parent the
query IsDepParent must apply.

nDepRelativesInTu

Returns the number of dependent relatives in
the assessment unit.
For being counted as dependent relative the
query IsDepRelative must apply.

nDepParentsAndRelativesInTu Is equivalent to nDepParentsInTu +
nDepRelativesInTu.

IsNtoMchild#x

Returns 1 if a person belongs to the n to m
oldest dependent children of the assessment
unit, 0 otherwise.
For being counted as 'dependent child' query
IsDepChild must apply.
n and m are defined by parameters #_N and
#_M.

If children are equally aged, they are sorted
by idPerson, i.e. children with lower
idPerson are considered to be older than
their equally aged siblings.

Example:
#_N = 2, #_M=4.
Assesment unit comprises 6 children aged
12, 10, 8, 6, 4 and 2.
Condition is fulfilled for the 2nd-oldest (10),
the 3rd-oldest (8) and the 4th-oldest (6)
child.

#_M; compulsory
#_N; compulsory

HasMaxValInTu#x Returns 1 if a person has the highest value of
a specific variable in the assessment unit, 0
otherwise.
Parameter #_val defines the specific value.
Parameter #_unique treats the case of several
persons with the same highest value: If set to

#_val;
compulsory
#_unique;
optional
#_adults_only;
optional

IsRichestInTu

yes, the return value is 1 for the person first
occurring in the dataset only, otherwise for
all persons with this value.
If parameter #_adults_only is set to yes
dependent children cannot be selected unless
there is no adult in the assessment unit. For
being regarded a 'dependent child' query
IsDepChild must apply.

HasMinValInTu#x

Returns 1 if a person has the lowest value of
a specific variable in the assessment unit, 0
otherwise.
Parameter #_val defines the specific value.
Parameter #_unique treats the case of several
persons with the same lowest value: If set to
yes, the return value is 1 for the person first
occurring in the dataset only, otherwise for
all persons with this value.
If parameter #_adults_only is set to yes
dependent children cannot be selected unless
there is no adult in the assessment unit. For
being regarded a 'dependent child' query
IsDepChild must apply.

#_val;
compulsory
#_unique;
optional
#_adults_only;
optional

GetPartnerIncome#x

Returns the income of a person's partner.
The partner is defined as the person in
household whose 'idperson' equals the
concerned person's 'idpartner'.
Parameter #_income defines the relevant
income (as variable or incomelist).
Note that the query is independent of any
assessment unit definition (and being
married).
Also note that the query returns zero if there
is no partner.
Finally note that the query has an alias
'GetPartnerInfo' which is supposed to be
used when a non-monetary information upon
the partner is requested (e.g. age).
There is however no real difference (i.e.
GetPartnerIncome and GetPartnerInfo return
the same result).

#_income;
compulsory

GetCoupleIncome#x

Returns the income of a person and her/his
partner.
The partner is defined as the person in
household whose 'idperson' equals the
concerned person's 'idpartner'.
Parameter #_income defines the relevant
income (as variable or incomelist).
Note that the query is independent of any
assessment unit definition (and being
married).

#_income;
compulsory

GetParentsIncome#x Returns the income of a person's (both)
parents.
The parents are defined as the persons in
household whose 'idperson' equals the
concerned person's 'idfather' or 'idmother'.
Parameter #_income defines the relevant
income (as variable or incomelist).
Note that the query is independent of any
assessment unit definition.
Also note that the query returns zero if there

#_income;
compulsory

are no parents, respectively the income of
one parent if there is only one.

GetMotherIncome#x

Returns the income of a person's mother.
The mother is defined as the person in
household whose 'idperson' equals the
concerned person's 'idmother'.
Parameter #_income defines the relevant
income (as variable or incomelist).
Note that the query is independent of any
assessment unit definition.
Also note that the query returns zero if there
is no mother.
Finally note that the query has an alias
'GetMotherInfo' which is supposed to be
used when a non-monetary information upon
the mother is requested (e.g. age).
There is however no real difference (i.e.
GetMotherIncome and GetMotherInfo return
the same result).

#_income;
compulsory

GetFatherIncome#x

Returns the income of a person's father.
The father is defined as the person in
household whose 'idperson' equals the
concerned person's 'idfather'.
Parameter #_income defines the relevant
income (as variable or incomelist).
Note that the query is independent of any
assessment unit definition.
Also note that the query returns zero if there
is no father.
Finally note that the query has an alias
'GetFatherInfo' which is supposed to be used
when a non-monetary information upon the
father is requested (e.g. age).
There is however no real difference (i.e.
GetFatherIncome and GetFatherInfo return
the same result).

#_income;
compulsory

GetOwnChildrenIncome#x

Returns the income of a person's children
(all of them).
The children are defined as persons in
household whose 'idfather' or 'idmother'
equals the concerned person's 'idperson'.
Parameter #_income defines the relevant
income (as variable or incomelist).
Note that the query is independent of any
assessment unit definition.
Also note that the query returns the sum of
all children's income and zero if there are no
children.

#_income;
compulsory

GetSystemYear

The query tries to extract the system's year
from the system's name, by searching for 4
subsequent digits, and returns the result if
found, -1 otherwise.

GetDataIncomeYear Returns the income year of the applied
dataset.

IsOutputCurrencyEuro Returns 1 if the output currency of the
system is Euro, 0 if national currency.

IsParamCurrencyEuro Returns 1 if the system is parametrised in
Euro, 0 if in national currency.

GetExchangeRate Returns system's exchange rate from euro to
national currency.

IsUsedDatabase#x

Returns 1 if a specific database is the
database used by the current run.
Parameter #_DataBasename defines the
respective database. The wildcards * and ?
can be used, where * stands for any
character and ? stands for one arbitrary
character (e.g. be_20*_v?).

#_DataBasename;
compulsory

IsDataVariable#x

Returns 1 if a specific variable exists in the
database used by the current run.
Parameter #_VariableName defines the
respective variable.

#_VariableName;
compulsory

Change log
This section provides a log of the changes to the EUROMOD help
pages and is intended to keep EUROMOD users informed about
changes to the model or the description from one version to the
other.

EUROMOD Installation and Architecture
EUROMOD Architecture can be best described by dividing it into
"software" and "content".

EUROMOD software basically comprises the EUROMOD user
interface and the EUROMOD executable. For a detailed
description see EUROMOD Installation and Architecture -
EUROMOD software (user interface and executable).
EUROMOD content is a specific file structure. The structure is
mainly composed by the EUROMOD parameter files, which
essentially describe how the tax-benefit systems of the countries
included in EUROMOD are implemented in the model. For a
detailed description see EUROMOD Installation and
Architecture - EUROMOD content (parameter files).

When users launch EUROMOD they open in fact the EUROMOD
user interface which takes care of essentially the whole
communication between users and the model. The two main tasks of
the user interface are to allow for

viewing and modifying the implementation of the tax-benefit
systems of the counties included in EUROMOD
running the model

For accomplishing the former task, the user interface reads and
modifies information stored in the EUROMOD content. Essentially it
reads from and writes to parameter files in XML format, which
contain the instructions the model needs for representing the
countries’ tax-benefit systems. To do so the user interface needs to
know where to find the EUROMOD content, that means it requires
information where the respective files structure is stored. This

information is indicated and can be changed via the main menu's
item Open project (see Working with EUROMOD - Open project).
Note that in principle it is possible that more than one EUROMOD
content exists. In other words there are two (or more) such file
structures (which may contain different versions of the parameter
files). In this case the dialog can be used to "switch" between these
versions. Also note that it is possible to simultaneously launch two
(or more) instances of the user interface, which may display different
EUROMOD contents.
The user interface stores the EUROMOD content it points to when it
is closed and thus, on reopening, is able to display the same
content. Also with the installation of a more recent version of the
software this information will not get lost. Thus, only when
EUROMOD is installed for the very first time, the user interface does
not have any information which content to display and therefore
opens the configuration dialog to allow users to select a respective
path. For more information see EUROMOD Installation and
Architecture - Installing EUROMOD.
For accomplishing the latter task – running the model - the user
interface starts the EUROMOD executable, which in fact carries out
the tax-benefit calculations and produces respective output in text
format. To do so the executable needs two sets of information.
Firstly, it reads the XML parameter files as stored in the EUROMOD
content (and possibly modified by the user interface). Secondly, it
reads a configuration file produced by the user interface for this
specific run. Most importantly the configuration file tells the
executable which tax-benefit systems to run on which data.

Installing EUROMOD
Prerequisites

Windows XP, Windows Vista, Windows 7 or Windows 8
At least 150 MB free disc space
Administrator permissions and internet connection (as the Setup
will download and install Microsoft .NET framework files)

Installation or Upgrade of EUROMOD software
see EUROMOD Installation and Architecture - EUROMOD software
(user interface and executable)
Download the EUROMOD software installation file
Setup_EMSoftware_X.Y.exe, start it and follow the instructions. This
checks and, if necessary, downloads and installs .NET Framework. It
also adds a shortcut to the Start menu and to the desktop, and adds
EUROMOD to the installed programmes in Windows Control Panel.

Specification the EUROMOD user interface's
"references"
Setup automatically starts the EUROMOD user interface. Upon the
first installation of the interface, it opens the open-project-dialog,
which allows for selecting the project (i.e. the specific versions of
country-implementations) the user interface refers to (see Working
with EUROMOD - Open project, in particular paragraph Opening the
user interface for the very first time).
You may also want to configure other important settings, as for
example where the model, as a default, generates output or where
the model, as a default, looks for input data. This purpose is served
by the project configuration dialog, opened via the item Project
Configuration of the main menu.[1] See Working with EUROMOD -
Configure project for a detailed description.

The user interface maintains these specifications. Thus, on a
subsequent start of the user interface, and also on a
subsequent installation, it does not request this information
anymore.

[1] You find the main menu above the Run EUROMOD button. Press the little arrow to open
it.

EUROMOD software (user interface and
executable)
EUROMOD software essentially consists of the EUROMOD user
interface and the EUROMOD executable. Concerning the tasks of
these programmes please see EUROMOD Installation and
Architecture. Moreover, EUROMOD software comprises some
additional programmes and files required by the model: most
importantly the programme that provides built-in help
(EUROMODHelp.chm) and some configuration files. All these parts
are installed, respectively updated by the EUROMOD installation
programme (see EUROMOD Installation and Architecture - Installing
EUROMOD).
Technically the user interface is implemented using Microsoft Visual
C# and requires a Microsoft Windows environment. The executable
is a C++ programme and, apart from some special functions, can
principally be compiled to run on other environments as well.
However, this option is currently not utilised nor are there plans to
check it out in the near future. Also in principle the executable can be
run independently from the user interface. For this a respective
configuration file must be set up, which is also the way the user
interface communicates with the executable.
In fact, the communication between the user interface and the
executable takes place as follows:
From the user interface to the executable: The user interface
launches the executable and passes information via a configuration
file. The most important information passed is, where the
EUROMOD content (i.e. XML parameter files) is stored and which
tax-benefit-systems are to be run. For a detailed description and the
storage place of the configuration file see EUROMOD Installation
and Architecture - EUROMOD software (user interface and
executable) - The configuration file.

Note that one run of the executable refers to one specific dataset.
That means, if users select several countries for run, respectively
tax-benefit systems of one country which are to be run with different
datasets, the user interface launches a corresponding number of
instances of the executable with a respective number of
configuration files (compare Working with EUROMOD - Running
EUROMOD).
From the executable to the user interface: The executable reports
about its progress via the standard output stream, whereas it writes
errors and warnings to the standard output stream for errors. The
user interface keeps "listening" to all instances of the executable it
started by reading from these streams. Thus the user interface is
able to show progress and display error logs (compare Working with
EUROMOD - Running EUROMOD). Apart from reporting warnings
and errors via the standard output stream for errors, the executable
generates a respective error-log-file to provide for more permanent
information.

The configuration file
The EUROMOD configuration file is a file that is generated by default from the
Run Dialogue every time you run the model. It contains all the information the
executable needs to perform the run and was in the past the only way to perform
a run from command line. It is still required if you are running the "old executable"
(i.e. EM2) from command line. The new EM3 executable can still use the
configuration file, but it also provides an easier way to run the model from
command line, through the use of command line parameters. The syntax to run
euromod with a configuration file is: EM2: "<executable path>\EUROMOD.exe" "
<configuration file path>\configuration file name.xml"
EM3: "<executable path>\EM_ExecutableCaller.exe" "<configuration file
path>\configuration file name.xml"
Usually the configuration file is generated by the EUROMOD user interface and
stored in the Temp folder of the EUROMOD content (see EUROMOD Installation
and Architecture - EUROMOD content (parameter files) - Organisation of files).
The user interface names the configuration file EMConfigGUID.xml, where GUID
stands for Globally Unique IDentifier and is a unique reference number formed by
a 32-character hexadecimal string. For the user interface it is necessary to use
unique names for configuration files as it frequently starts more than one run of
the executable at the same time.
The content of the configuration file is composed by the following information. xxx
denotes an example.

Content of configuration file Comments
<?xml version="1.0" standalone="true"?>

<EMConfig>

<COUNTRY_FILE>SL.xml</COUNTRY_FILE> names of the parameter files of the country to run
(compare EUROMOD Installation and Architecture
- EUROMOD content (parameter files) - Format of

country parameter files)<DATACONFIG_FILE>SL_DataConfig.xml</DATACONFIG_FILE>

<PARAMPATH>C:\Euromod\EuromodFiles\XMLParam\Countries\SL\</PARAMPATH> folder where (the two above) parameter files are
stored

<OUTPUTPATH>C:\Euromod\EuromodFiles\output\</OUTPUTPATH>
folder to store model output (compare Working

with EUROMOD - Running EUROMOD,
paragraph Selecting the output path)

<DATAPATH>C:\Euromod\EuromodFiles\input\</DATAPATH> folder where input-dataset is stored (compare
Working with EUROMOD - Open project)

<DATASET_ID>CBA7E428-F8E4-4CEB-8A5E-9ACE73987DD7</DATASET_ID>

unique ID of the input-dataset as stored in
cc_DataConfig.xml (compare EUROMOD

Installation and Architecture - EUROMOD content
(parameter files) - Format of country parameter

files)

<SYSTEM_ID>4027fd02-1691-4216-a3e2-f00b980bb06f</SYSTEM_ID> unique IDs of the systems to run as stored in cc.xml
(compare EUROMOD Installation and Architecture
- EUROMOD content (parameter files) - Format of

country parameter files)<SYSTEM_ID>6b06872b-6a65-4750-869c-9aa41c7cf6e9</SYSTEM_ID>

<STARTHH>-1</STARTHH>
ID, as stored in input-dataset, of first/last household

to be included in the calculations, -1 means no
lower/upper limit (compare Working with

EUROMOD - Running EUROMOD, paragraph
Limiting the output to selected households)

<LASTHH>-1</LASTHH>

<DECSIGN_PARAM>.</DECSIGN_PARAM>

Decimal sign used in parameter files (compare
Working with EUROMOD - Administration of

countries - Handling of the decimal and thousand
separators in EUROMOD)

<EMVERSION>F6.36</EMVERSION> compare Working with EUROMOD - Open project

<UIVERSION>Beta2</UIVERSION> see Working with EUROMOD - Help and info

<ERRLOG_FILE>C:\Euromod\EuromodFiles\output\201306041351_errlog.txt</ERRLOG_FILE>
name and path of the file to log errors and warnings

(see Working with EUROMOD - Searching -
Finding errors)

<LOG_WARNINGS>yes</LOG_WARNINGS>
setting of option Do not stop on non-critical errors

(see Working with EUROMOD - Running
EUROMOD, paragraph Advanced settings)

<LOG_RUNTIME>no</LOG_RUNTIME>
setting of option Log runtime in detail (see

Working with EUROMOD - Running EUROMOD,
paragraph Advanced settings)

<HEADER_DATE>201306041351</HEADER_DATE>

date to be used as prefix for EMHeader.txt (see
Working with EUROMOD - Running EUROMOD,

paragraph Running the selected system-dataset
combinations)

<OUTFILE_DATE>-</OUTFILE_DATE>

optional date to be used as prefix for model output
files, corresponds to setting of option Add date to
output-filename (see Working with EUROMOD -

Running EUROMOD, paragraph Advanced
settings)

<CONFIGPATH>C:\Euromod\EuromodFiles\XMLParam\Config\</CONFIGPATH>

folder where the EUROMOD variables file is
stored (compare EUROMOD Installation and
Architecture - EUROMOD content (parameter

files) - Format of the variables file)

<EMCONTENTPATH>C:\Euromod\EuromodFiles\</EMCONTENTPATH>
folder containing the EUROMOD file structure
(see EUROMOD Installation andArchitecture -

EUROMOD content (parameter files))[1]

<POLICY_SWITCH>yem_??=4027fd02-1691-4216-a3e2-
f00b980bb06f=off</POLICY_SWITCH>

instructions for the executable to change switches
of switchable policies, in the form

SwitchablePolicy_SearchPattern=SystemID=value,
for more information see Working with

EUROMOD - Changing Countries' Setting -
Administrating policy switches

<POLICY_SWITCH>yem_??=6b06872b-6a65-4750-869c-
9aa41c7cf6e9=on</POLICY_SWITCH>

<LAST_RUN>yes</LAST_RUN>
used by the user interface to indicate whether the

run is the last of a series (instructs the executable to
close the error log file (with an endnote) or not

<ISPUBLICVERSION>no</ISPUBLICVERSION>

informs the executable if the run was started via a
EUROMOD public version (see Working with
EUROMOD - Generating a EUROMOD public

version)

</EMConfig>

[1] Assuming that the EUROMOD file structure is always organised as described in EUROMOD Installation
and Architecture - EUROMOD content (parameter files) - Organisation of files it would be enough for the
executable to know the EMCONTENTPATH, as PARAMPATH and CONFIGPATH can be deduced from
EMCONTENTPATH. In fact, the reason for having three parameters is historical. The reason for still keeping
them is twofold. Firstly, and more essentially, add-ons generate temporary parameter files, which are not
read from the usual path, but from the Temp folder. Secondly, the executable does not need to know about
the organisation of files, i.e. no redundancy of information is necessary.

clbr://internal.invalid/book/EM_WW_AdministratingPolicySwitches.htm

Command line parameters
There are two ways to run the EUROMOD executable from
command line, and both can use either a configuration file or
command line parameters to define the run properties:

1. With a set of named parameters (this is the recommended
way)

2. With a set of unnamed parameters

Running EUROMOD with a set of named parameters
This is now the preferred method of calling the executable from
command line, as it provides the golden ballance between user-
friendliness and flexibility. The syntax for calling the executable with
a set of named parameters is:
EM_ExecutableCaller <parameters>
In this case, the order in which you have to place the parameters is
arbitrary. The currently available list of parameters is described in the
table below:

Parameter Usage Comments

-config <config_path> Special

The path to a configuration file (e.g. -config "<configuration file
path>\configuration file name.xml").

If this parameter is specified, then there is no need to specify any other
parameters, as everything else can be specified within the configuration
file. You can read more about the configuration file in the relevant help

section.
The usage for the remaining parameters below assume that the -

config parameter is not specified.

-emPath <project_path> Required The path to the EUROMOD project you want to run (e.g. -emPath
"C:\Euromod\EuromodFiles_I1.0+").

-sys <system_name> Required The name of the system you wish to run (e.g. -sys "BE_2014").

-data <dataset_name> Optional The name of the dataset you wish to use (e.g. -data "BE_2015_a1"). If
no dataset is given, "the best match" will be used.

-outPath <output_path> Optional The folder where you want to write the model output (e.g. -outPath
"C:\Euromod\EuromodFiles_I1.0+\Output").

-dataPath <data_path> Optional The folder where you store your input data (e.g. -inPath
"C:\Euromod\EuromodFiles_I1.0+\Input").

-addOn <addOn_name>|<add-on-system> Optional
This allows you to run an add-on (e.g. -addOn "MTR|MTR_BE").
Note that one can use to parameter for adding as many add-ons as

desired.

-extSwitch <extension_name>=<value> Optional This allows you to change an extension value (e.g. -extSwitch "BTA_??
=off").

Note that one can use the parameter for as many extension value
changes as required.

-globalPath <global_path> Optional

The folder where you store your global files (e.g. -globalPath
"C:\Euromod\EuromodFiles_I1.0+\XMLParam\Config\").

It is useful in cases where you need to store different versions of your
country files in different places (e.g. because you are creating reforms
from Stata), but your golbal files do not change and you do not want to

have to replicate the full project folder structure for each reform.

-forceOutputInEuro Optional This parameter forces the EUROMOD executable to produce all output
in Euro.

-forceSequentialRun Optional
This parameter forces the EUROMOD executable to use only a single
thread to run the model (by default, EUROMOD tries to fully utilise

your CPU by using all available threads).

-forceSequentialOutput Optional

This parameter forces the EUROMOD executable to use only a single
thread to prepare the output file (while everything else still runs in

multiple threads). It can be useful in cases where RAM is sparse, as it
cuts memory usage to almost half, while the total execution time is still

much faster than when using -forceSequentialRun.

Some examples for illustration:
"C:\Program
Files\EUROMOD\Executable\EM_ExecutableCaller.exe" -config
"C:\Euromod\EuromodFiles_I1.0+\XMLParam\Temp\EMConfig30aab
8ef-ae5b-4601-842c-fdeb67c49116.xml"
"C:\Program
Files\EUROMOD\Executable\EM_ExecutableCaller.exe" -emPath
"C:\Euromod\EuromodFiles_I1.0+" -sys BE_2014 -data BE_2015_a1
(or "C:\Program
Files\EUROMOD\Executable\EM_ExecutableCaller.exe" -data
BE_2015_a1 -sys BE_2014 -emPath
"C:\Euromod\EuromodFiles_I1.0+")
(or "C:\Program
Files\EUROMOD\Executable\EM_ExecutableCaller.exe" -sys
BE_2014 -emPath "C:\Euromod\EuromodFiles_I1.0+" -data
BE_2015_a1)
"C:\Program
Files\EUROMOD\Executable\EM_ExecutableCaller.exe" -emPath
"C:\Euromod\EuromodFiles_I1.0+" -sys BE_2014 -data BE_2015_a1
-dataPath "C:\Euromod\ModelData" -outPath
"C:\Euromod\OutputFolder"
"C:\Program

Files\EUROMOD\Executable\EM_ExecutableCaller.exe" -emPath
"C:\Euromod\EuromodFiles_I1.0+" -sys BE_2014 -data BE_2015_a1
-addOn "MTR|MTR_BE"
"C:\Program
Files\EUROMOD\Executable\EM_ExecutableCaller.exe" -emPath
"C:\Euromod\EuromodFiles_I1.0+" -sys BE_2014 -data BE_2015_a1
-globalPath "C:\Euromod\EuromodFiles_I1.0+\XMLParam\Config" -
forceOutputInEuro
(Note: quotes are only necessary where an argument (e.g. path) contains blanks but it is
important to *not* end your path with a backslash because this confuses windows!)

Running EUROMOD with a set of unnamed parameters
This simplified way of calling the executable from command line is
the old way of running EUROMOD and in this case the order of
parameters is crucial. Please note that this method is still available
for backwards compatibility only, but will likely be phased out in the
future so we do not recommend using it.
If you provide the EUROMOD executable with a single unnamed
parameter, then this is expected to be the path to a configuration
file. The syntax for this is:
EM_ExecutableCaller <config_file>
For example:
"C:\Program
Files\EUROMOD\Executable\EM_ExecutableCaller.exe"
"C:\Euromod\EuromodFiles_I1.0+\XMLParam\Temp\EMConfig30aab
8ef-ae5b-4601-842c-fdeb67c49116.xml"

If you provide the EUROMOD executable with three to five
unnamed parameters, then the syntax becomes:
EM_ExecutableCaller <project_path> <system_name>
<data_name> [<data_path>] [<output_path>]

where the default value for <data_path> is "<project_path>\Input"
and the default value for <output_path> is "<project_path>\Output"
Some examples for illustration:
"C:\Program
Files\EUROMOD\Executable\EM_ExecutableCaller.exe"
"C:\Euromod\EuromodFiles_I1.0+" BE_2014 BE_2015_a1
"C:\Program
Files\EUROMOD\Executable\EM_ExecutableCaller.exe"
"C:\Euromod\EuromodFiles_I1.0+" BE_2014 BE_2015_a1
"C:\Euromod\ModelData"
"C:\Program
Files\EUROMOD\Executable\EM_ExecutableCaller.exe"
"C:\Euromod\EuromodFiles_I1.0+" BE_2014 BE_2015_a1
"C:\Euromod\ModelData" "C:\Euromod\OutputFolder"
(Note: quotes are only necessary where an argument (e.g. path) contains blanks but it is
important to *not* end your path with a backslash because this confuses windows!)

Note that the dataset indicated with data_name must be registered
via the Configure Databases dialog. This is necessary for obtaining
important data settings like the income year of the data.

EUROMOD content (parameter files)
As stated in EUROMOD Installation and Architecture, EUROMOD
content is a specific file structure, which contains the information
required by the EUROMOD software to accomplish its tasks (see
EUROMOD Installation and Architecture - EUROMOD software
(user interface and executable)). The concrete content of the
structure is described in EUROMOD Installation and Architecture -
EUROMOD content (parameter files) - Organisation of files, while its
main content, the EUROMOD parameter files, are described in
EUROMOD Installation and Architecture - EUROMOD content
(parameter files) - Format of country parameter files. Finally
EUROMOD Installation and Architecture - EUROMOD content
(parameter files) - Format of the variables file describes a special
parameter file, which contains information about EUROMOD
variables.

Organisation of files
The EUROMOD file structure, also referred to as "content" (in
contrast to "software") is organised as follows:

Folder / sub
folder Content

XMLParam This folder contains the files where the executable and the user interface draw their information from.

Countries

This folder contains the EUROMOD parameter files, i.e. the files that contain the implementation of the
countries' tax-benefit systems in EUROMOD. There is one sub folder for each country. The name of this folder is

the short name of the country (e.g. DE for Germany, HU for Hungary, EL for Greece, ...).

Each country's folder contains two XML-files (cc stands for the country's short name):

cc.xml contains the parameters that describe the country's tax-benefit system (and some other information).

cc_DataConfig.xml contains information on the input datasets that are used to simulate these tax-benefit
systems.

For the composition of these files see EUROMOD Installation and Architecture - EUROMOD content
(parameter files) - Format of country parameter files.

Moreover, the country's folder contains an image in portable network graphic format (png) used by the user
interface to display the country's flag.[1]

AddOns

This folder contains special EUROMOD parameter files, which contain the implementation of EUROMOD add-
ons. Similar to countries, there is one sub folder per add-on. The name of the folder is the short name of the add-

on (e.g. MTR.xls for the Marginal Tax Rate add-on).

Each add-on's folder holds one XML-file containing the parameters that describe the add-on's tasks. The structure
of the file is in principle the same as for a country's cc.xml. See EUROMOD Installation and Architecture -

EUROMOD content (parameter files) - Format of country parameter files for its composition.

Moreover, the add-on's folder contains an image in portable network graphic format (png) used by the user
interface to display the add-on's symbol.

Also see EUROMOD Functions - EUROMOD add-ons and the special functions AddOn_Applic, AddOn_Pol,
AddOn_Func and AddOnPar for more information on implementing add-ons and Working with EUROMOD -

Running EUROMOD for information on the application of add-ons.[2]

Config

This folder contains two files:

VarConfig.xml stores the list of EUROMOD variables in XML-format - see Working with EUROMOD -
Administration of EUROMOD variables.

EuromodVersion.txt stores the EUROMOD version number – see Working with EUROMOD - Open project,
paragraph EUROMOD Version.

Moreover, the folder contains a subfolder Images, which contains two images in portable network graphic format
(png) used by the user interface as a default to display a country's flag or an add-on's symbol, if it does not

possess an own flag/symbol.

Temp The folder contains temporary files, which can be deleted without consequence.

Input This folder may contain input data - see Working with EUROMOD - Open project.

Output This folder may be used as default output folder - see Working with EUROMOD - Open project.

Applications This folder contains external tools - see Working with EUROMOD - Applications.

[1] In addition the folder may temporary contain a small text file, which contains information
on who uses the country currently (see Working with EUROMOD - Saving and file locking).

[2] In addition the folder may temporary contain a small text file, which contains information
on who uses the add-on currently (see Working with EUROMOD - Saving and file locking).

Format of country parameter files
The information required by EUROMOD for implementing a country's
tax-benefit system is stored in two XML-files (cc stands for the
country's short name): cc.xml (e.g. HU.xml) essentially contains the
parameters that describe the country's tax-benefit system.
cc_DataConfig.xml (e.g. HU_DataConfig.xml) contains information
on the input datasets that are used to simulate these tax-benefit
systems.
The paragraphs below describe the XML-structure of these files,
where xxx denotes an example and xxx denotes a comment. Note
that these files are used as well by the user interface as by the
EUROMOD executable.
cc.xml

<?xml version="1.0" ?> <CountryConfig
xmlns="http://euromod.com/CountryConfig.xsd">

<Country>
<ID>863BDA5C-077E-4508-86E9-0A7F69812A1C</ID>

<Name>Simpleland</Name>
<ShortName>sl</ShortName>
for each implemented tax benefit system:
<System>
<ID>250851CB-3685-4844-B98D-0BA4C3854808</ID>

<CountryID>863BDA5C-077E-4508-86E9-
0A7F69812A1C</CountryID> <Name>SL_demo</Name>

<CurrencyOutput>euro</CurrencyOutput>
<CurrencyParam>euro</CurrencyParam>
<ExchangeRateEuro>1</ExchangeRateEuro>
<HeadDefInc>ils_origy</HeadDefInc>
<Private>no</Private>

<Order>1</Order>
for each policy of the tax benefit system:
<Policy>
<ID>374DA5B0-8E08-4664-96B2-BC1794E5AEBC</ID>

<SystemID>250851CB-3685-4844-B98D-
0BA4C3854808</SystemID> <ReferencePolID></ReferencePolID>

<Name>Uprate_sl</Name> <Type>def</Type> <Comment><!
[CDATA[DEF: UPRATING FACTORS]]></Comment>
<Private>no</Private> <PrivateComment></PrivateComment>

<Switch>on</Switch> <Order>1</Order> for each function of the
policy:

<Function>
<ID>4F1388B1-4D49-4CE0-BF32-C17328206B73</ID>

<PolicyID>374DA5B0-8E08-4664-96B2-
BC1794E5AEBC</PolicyID> <Name>Uprate</Name> <Comment>
<![CDATA[]]></Comment> <Private>no</Private>
<PrivateComment></PrivateComment>

<Switch>on</Switch> <Order>1</Order> for each parameter of
the function:

<Parameter>
<ID>427912DF-0EC6-4785-B0A3-0E322C08EA28</ID>

<FunctionID>4F1388B1-4D49-4CE0-BF32-
C17328206B73</FunctionID> <Name>def_factor</Name>
<Comment><![CDATA[]]></Comment> <PrivateComment>
</PrivateComment>

<Value>1</Value> <ValueType>amount</ValueType>
<Order>2</Order> <Group></Group>

<Private>no</Private>
</Parameter>
</Function>
</Policy>

</System>
</Country>
for each conditional format (information required by the user

interface - see Working with EUROMOD - Conditional
formatting):

<ConditionalFormat>

<ID>68649e4e-50dd-4460-bac7-b4db9695abd7</ID> <BackColor>

</BackColor> <ForeColor>FF80FF00</ForeColor/> <Condition>{*#m*}
</Condition> <BaseSystemName></BaseSystemName> for each system
concerned by the conditional format:

<ConditionalFormat_Systems>

<ConditionalFormatID>68649e4e-50dd-4460-bac7-
b4db9695abd7</ConditionalFormatID>

<SystemName>SL_demo</SystemName> </ConditionalFormat_Systems>

<ConditionalFormat>

</CountryConfig>

cc_DataConfig.xml

<?xml version="1.0" ?>
<DataConfig xmlns="http://euromod.com/DataConfig.xsd">

for each available dataset:
<DataBase>
<ID>DDBC477B-91E6-4A60-BF93-A08C538D57FF</ID>

<Name>sl_demo_v4</Name> <Comment><![CDATA[]]>
</Comment> <YearCollection></YearCollection>

<YearInc></YearInc>
<Currency>euro</Currency> <FilePath></FilePath>
<DecimalSign>.</DecimalSign> <Private></Private>
<UseCommonDefault></UseCommonDefault>

</DataBase>
for each system-dataset combination (see EUROMOD Basic

Concepts - EUROMOD input and output):
<DBSystemConfig>
<SystemID>250851CB-3685-4844-B98D-

0BA4C3854808</SystemID>
<SystemName>SL_demo</SystemName>
<DataBaseID>DDBC477B-91E6-4A60-BF93-
A08C538D57FF</DataBaseID> <UseDefault></UseDefault>

<UseCommonDefault></UseCommonDefault> outdated, to be
removed once not used anymore

<Uprate></Uprate>
<BestMatch>yes</BestMatch> for each default of a switchable policy (see

Working with EUROMOD - Changing Countries' Setting -
Administrating policy switches):

<PolicySwitch>

<SwitchablePolicyID>79513cab-d092-477d-b17e-
442882767cbf</SwitchablePolicyID> <SystemID>250851CB-3685-4844-
B98D-0BA4C3854808</SystemID> <DatabaseID>DDBC477B-91E6-4A60-
BF93-A08C538D57FF</DatabaseID> <Value><![CDATA[on]]></Value>

</PolicySwitch>

</DBSystemConfig>
</DataConfig>

clbr://internal.invalid/book/EM_WW_AdministratingPolicySwitches.htm

Format of the variables file
The file storing EUROMOD variables (see Working with EUROMOD
- Administration of EUROMOD variables) has the following format
(xxx denotes an example and xxx denotes a comment): <?xml
version="1.0" ?> <VarConfig
xmlns="http://euromod.com/VarConfig.xsd">

for each variable:
<Variable>
<ID>8B0EEE12-6D72-42C6-9730-1A195AB98AA7</ID> <Name>

<![CDATA[afc]]></Name> <Monetary>0</Monetary>
<AutoLabel><![CDATA[assets : financial capital]]></AutoLabel> for

each country specific description:
<CountryLabel>
<ID>6CCEF1AC-34A6-49F0-9D71-D219FAE6A90A</ID>

<VariableID>8B0EEE12-6D72-42C6-9730-
1A195AB98AA7</VariableID> <Country>at</Country>

<Label><![CDATA[Finanzkapital]]></Label> </CountryLabel>
</Variable>
for each acronym type:
<AcronymType>
<ID>D0E67181-46DF-4629-83DB-4115448365FE</ID>

<LongName><![CDATA[demographic]]></LongName> <ShortName>
<![CDATA[d]]></ShortName> for each acronym level:
<AcronymLevel>
<ID>6CCA8A22-0FDD-4A25-BFEC-3EDB56F435CC</ID>

<Index>1</Index>
<TypeID>D0E67181-46DF-4629-83DB-4115448365FE</TypeID>

<Name><![CDATA[main]]></Name> for each acronym:
<Acronym>

<ID>FB3DBC6E-9238-4BAA-BF36-0E0171EA0A52</ID>
<LevelID>6CCA8A22-0FDD-4A25-BFEC-
3EDB56F435CC</LevelID> <Name><![CDATA[ct]]></Name>
<Description><![CDATA[country]]></Description> for each
category:
<Category>
<AcronymID>FB3DBC6E-9238-4BAA-BF36-

0E0171EA0A52</AcronymID> <Value>1</Value>
<Description><![CDATA[at]]></Description> </Category>
</Acronym>
</AcronymLevel>
</AcronymType>
for each switchable policy:
<SwitchablePolicy>
<ID>79513cab-d092-477d-b17e-442882767cbf</ID>

<NamePattern><![CDATA[yem_??]]></NamePattern> <LongName>
<![CDATA[Minimum Wage]]></LongName> </SwitchablePolicy>
</VarConfig>

EUROMOD Version Control
The help for EUROMOD version control is split in two parts

Workflow guide & basic concepts and
VC forms & functions

The Workflow guide & basic concepts pages, in principle, can be
read like a textbook. They instruct users in a twofold way: Firstly,
they provide them with the knowledge they need to understand
EUROMOD version control. Secondly, they give how-to-do
instructions on the operations necessary for Version Control. The
work flow instructions are arranged bottom-up. That means they start
with instructions for general usage, i.e. tasks most users will need to
know and/or will operate with higher frequency. This is followed by
instructions for less frequent use and by less users (e.g.
administrative tasks).
The VC forms & functions are of more technical nature. They
concentrate on describing the technical procedure and sometimes
provide technical background. Moreover, they are more
comprehensive than the work flow instructions which sometimes
concentrate on the most usual applications. The VC forms &
functions pages are from time to time referenced in the work flow
instructions, so that the latter can concentrate on "what's going on"
while the former explain "how that's accomplished". Obviously
reading this part of the help like a textbook does not make sense,
rather it is accessed via a search request or via the work flow
instructions.

Workflow guide & basic concepts
This section provides instructions for the most common workflows
Version Control (VC) may be used for. However, to better understand
these workflows, you need to first understand the basic concepts of
VC.
VC is an online repository for EUROMOD projects, that can store
multiple versions of each project, allowing users to better track and
manage their model's development. In these help pages, we refer to
the projects stored in VC as VC projects. Every VC project is
composed of several Units. A Unit can be a country, an Add-on, a
configuration file (such as the Variables file or the Exchange Rates
file), or a special folder (like the Log folder or the Input folder).
As already mentioned, VC can store multiple versions of each
project. These versions are called Bundles.
The unit level is the finest level of control VC has. A user can
download specific units only.
In the following pages, you will learn how to handle the most
common workflows in VC:

Connecting to a VC project
Downloading a VC project bundle
Creating a new bundle for an existing VC project
Administrating VC projects

Downloading a project bundle
On regular basis, the EUROMOD team releases updates of the
EUROMOD core project, which always include new or improved
implementations of countries' tax-benefit systems, frequently new or
improved implementations of EUROMOD add-ons and sometimes
even new countries. This section describes how to download a given
bundle, either as a clean new project or to update your existing local
EUROMOD project. The following instructions apply to any VC
project, including ones that you have created yourself.

Creating a new local project
In order to create a new (clean) local project out of an online bundle,
you first need to click the New Project button to bring up the New
Project form. You can find this button in two places: in the main
menu and in the Version Control ribbon within the ADVANCED
OPTIONS group. There you should check the Project on VC option.
Note that if you were not already logged into the VC, you will be
asked to login now. Then you need to choose the Project and the
Bundle you want to download. As with any new project, you also
need to specify the Project Folder and Project Name at the top of the
form. If you do not want to get the full bundle, you can specify which
units you want to download by clicking on the Define Content button.
So for example, if you want to create a new project out of the latest
available master version, you need to:

Click on New Project button to bring up the New Project form.
Set the new project path and name.
Check the Project on VC checkbox.
Select the EUROMOD_MASTER_VERSION on the first combo-
box.
And finally click on OK.

The latest bundle will be selected by default, and all the available
units will be included. Please note that it may take some time to
download the whole project.

Similarly, if you want to create a new project for a specific paper that
focuses for example on AT, BE, DE & ES, and you want it based on
master version H0.45, then you need to:

Click on the New Project button to bring up the New Project
form.
Set the new project path and name.
Check the Project on VC checkbox.
Select the EUROMOD_MASTER_VERSION on the first combo-
box.
Select H0.45 on the second combo-box.
Click on the Define Content button.
In the Define Project Content form, chose only the units you
want to download (AT, BE, DE, ES, all config files, possibly any
Add-ons you need as well as the Input & Log folders).
Click OK on the Define Project Content form.
And finally click OK on the New Project form.

Updating an existing local project
Sometimes however, you are already working with an existing local
project and you need to bring it up-to-date with a given online
bundle, but you want to do so without losing any of your local
changes. You can achieve this by following the steps below:

Log into the VC, by clicking the Click to Log In button on the VC
ribbon.
Click on the Compare and merge bundle on the VC ribbon
within the ADVANCED OPTIONS group to bring up the Version

Control - Download Bundle form. If you were already connected
to a project, it will be preselected in the Project combo-box.
Select the Project and Bundle you want to download. At this
point, VC will download detailed information for each unit and
compare them to your local units. This may take some time.
Once done, the grid will be filled with detailed information. For
each unit, you will have the option to either keep your version,
overwrite it with the online version, or get merge support so that
you can use the Merge Tool to combine the two versions. Note
however, that some options may not be available for all units.
For example, the Merge Tool does not support some unit types,
so the Get Merge Support option will be disabled. Also, if a local
unit is already matching the contents of the online unit, no
further action can be taken.
Click on the Download button. VC will not touch any units for
which you selected Keep Local Version, it will overwrite all units
where you selected Get Online Version and will create a merge
environment for all units where you selected Get Merge
Support.
If you selected Get Merge Support for one or more Countries or
Add-ons, you can now open them in the UI, click the Compare &
merge country/Add-on button on the VC ribbon and then click
Yes to open the Merge Tool using the downloaded merging
environment.
If you selected Get Merge Support for the configuration files
units, you can now click the Compare & merge config files
button on the VC ribbon and then click Yes to open the Merge
Tool using the downloaded merging environment.

For further information on these issues, please see Download
Bundle.

Start/Finish Merging: Creation of a new
online bundle
If you are working on a given project and you have it on Version
Control (VC), you will regularly find the need to save your work by
uploading it to VC. You can do this by creating and uploading a new
Bundle. This section describes how to merge (upload) a new bundle
in a VC project. Note that in order to do the following, you need to
have the appropriate access rights to create a new bundle for this
project.
Before starting the merge, please open in EUROMOD the bundle
where you implemented your changes and log in to the Version
Control.
Then, follow the steps under the NEW ONLINE BUNDLE group of
the VC ribbon):

1. Connect
Open in EUROMOD the bundle where you implemented your
changes.

2. Start new online bundle
Click on Start new online bundle: This button will lock the online
bundle in order to prevent other users from changing it. If any other
user tries to start a new online bundle for the same project, he/she
will receive a message and will not be allowed to proceed. After
clicking on Start new online bundle, you will be asked to confirm this
action. Click on Yes.
A message will confirm that a new online bundle has been started for
that project. Click on OK.
All users with access to that project will receive an email in which
they will be informed about the fact that you started a new bundle for
that project.

3. Download latest bundle
The latest online bundle should always be used as base for the new
online bundle. This step will download the latest bundle and open it
in EUROMOD so that it can be used as base project. Click on
Download latest bundle and fill in the form:

Select a path to store the project.
Select the components that you would like to download (Note:
Switchablepolicyconfig, hicpconfig, input, varconfig,
exchangerateconfig and em_log should always be downloaded
in order to assure that the downloaded project works properly).
Click on Download .

After the online project has been downloaded, a message will
appear. Click on OK . This project will be automatically opened in
EUROMOD. Another message will inform you about this, click again
on OK .

4. Merge changes in countries

This step will allow you to easily incorporate your changes to the
country spines to the latest online bundle.
In order to do so, first you have to open the country you would like to
merge. To do so, click on Countries and then, on the flag of the
country:
Then, go back to the Version Control tool tab and click on Merge
country. You will be asked if you would like to compare this bundle
with another local bundle. That local bundle should correspond to the
one from which you initiated the process (the one in which you
implemented your changes). Click on Yes.

The merge tool will be opened.

The merge tool contains several tabs for the different elements that
can be compared and merge. It is divided in two sections (local and
remote). The area on the left-hand side displays the values in the
local bundle (this is the one you have just downloaded). The area on
the right-hand side displays the values in the remote bundle (this is
the one from which you initiate the process, the one in which you
implemented your changes).
Accept or reject your changes by right clicking on each change and
then accepting or rejecting them.

Accepting a change means that this value will be copied from
the remote bundle to the local bundle (this is, from the bundle
where you implemented your changes to the bundle you just
downloaded).
Rejecting a change means that your modified value will be
discarded and the original value will remain.

Once all changes have been accepted or rejected, click on Apply.A
message will appear. Click on OK.

If needed, modify the country manually to add additional changes.
Save your changes (Ctrl + S).
Repeat this step (step 4) for all the countries that you need to merge.

5. Merge changes in configuration files
This step will allow you to easily incorporate the changes you have
performed to the configuration files to the latest online bundle.
Click on Merge config files. You will be asked if you would like to
compare this bundle with another local bundle. That local bundle
should correspond to the one from which you initiated the process
(the one in which you implemented your changes). Click on Yes.
Select the configuration file that you would like to compare and click
on OK.

The merge tool contains several tabs for the different elements that
can be compared and merge. It is divided in two sections (local and
remote). The area on the left-hand side displays the values in the
local bundle (this is the one you have just downloaded). The area on
the right-hand side displays the values in the remote bundle (this is
the one from which you initiate the process, the one in which you
implemented your changes).
Accept or reject your changes by right clicking on each change and
then accepting or rejecting them.

Accepting a change means that this value will be copied from
the remote bundle to the local bundle (this is, from the bundle
where you implemented your changes to the bundle you just
downloaded).
Rejecting a change means that your modified value will be
discarded and the original value will remain.

Once all changes have been accepted or rejected, click on Apply. A
message will appear. Click on OK.
If needed, modify the configuration file manually to add additional
changes. Save your changes (Ctrl + S).
Repeat this step (step 5) for all configuration files (VARCONFIG.xml,
EXCHANGERATESCONFIG.xml, HICPCONFIG.xml,
SWITCHABLEPOLICYCONFIG.xml).

6. Update the log file
From the Windows (or any operating system) file explorer, navigate
to the path where you have downloaded the latest version of the
model, access the Log folder and update the EM_LOG.xlsx file with
the latest changes.

7. Upload and finish online bundle
After performing the previous steps (step 1-6), click on Upload and
finish online bundle. You will be asked for confirmation, click on Yes.

Then, select the units that you would like to upload. The ones with
changes will appear as modified.
The version may also be changed by ticking the checkbox Manual
Version and then manually writing the new version. Click on Upload.
Wait until all units are uploaded. A message will appear then. Click
on OK.
Once the new bundle is created, all users with permissions to access
this project will receive an email informing them about the fact that a
new bundle has been created by you for this project.
The online version of the project will also be unlocked once the new
bundle is created so that other users can edit it if needed.

Abort the creation of a new online bundle
The creation of a new online bundle can be aborted at any time by
clicking[4] on the Abort new online bundle button and then clicking
on Yes.
Then click OK on the message that will appear.

[1] The previous steps do not need to be performed at once. If you close EUROMOD in the
middle of the process and then open it again later, EUROMOD will informed you about the
fact that you have an unfinished merge when you connect to the same project again and
you will be allowed to continue creating your online bundle from the same step you were
performing when you closed EUROMOD.

[2] If you would like to continue a merge and you haven't downloaded the latest online
bundle yet (you are still in step 1 or 2), you have to open EUROMOD with the bundle in
which you implemented your changes and then connect to the project and continue the
creation of the new bundle.

[3] If you would like to continue a merge and you have already downloaded the latest online
bundle (you are in step 3 or later), you have to open EUROMOD with the bundle you have
downloaded. After connecting to the project you will be asked if you would like to use the
current bundle as lastest online bundle. Click on Yes to continue from the same step you
were performing when you closed EUROMOD.

[4]Please, notice that if you abort and then decide to create a new online bundle, you will
have to start the process from the very beginning.

Administrating VC projects
From time to time, you will have a specific research project to
complete that requires you to create a separate EUROMOD project.
For example, you may need to write a comparative paper for 10
countries. For cases like these, you can create and manage your
own custom VC projects and this section shows you how to do this.

Create new VC project
Creating a new empty VC project is very easy and can be completed
in three simple steps:

Log in
Click the Add VC Project button
Select a name for this project and click OK

The above steps will generate a new empty VC project and connect
your local project to the new VC project.

Administrating the content of your VC project
Once your new VC project is ready and you are connected to it, you
will need to add some content (units) to it. You can do this by clicking
the Administrate Content button in the ADMIN section of the VC
ribbon to bring up the Version Control - Administrate Content form.
This form contains a listbox with all the available version controlled
units for the VC project you are connected to. Using the buttons at
the bottom of the form, you can:

Add Local Units to VC: which allows you to upload your existing
local units into the VC project.
Remove Units from VC: which will remove the selected units
from VC.

Get Units from VC: which will create a local copy of the selected
VC units (taking the latest version available).

Assuming this is a new VC project you just created, you would need
to click the Add Local Units to VC button and select the units you
want to include in the VC project. Note that this will automatically
generate a bundle for your project, you can select the version
number by ticking the checkbox Manual Version and inserting the
version number.

Administrating the Users of your VC project
So now you have a VC project that is ready to be used. The next
step will be to allow other people to use it. When you create a new
VC project, you are automatically added as the administrator of this
project. To add or remove other users, or to change their access
rights, you need to click the Administrate Users button, which will
bring up the Version Control - Administrate Project Users form. Here
you will see a list of all existing users, along with their access rights
for this project. You can add further users by clicking on the Add
Users button on the top right. This will give you a list of all the VC
users (who are not already part of this project) and allow you to give
them access to this project.[1] Furthermore, you can finetune the
type of access each user has. The highest access a user can have is
to be an Admin for this project, meaning that (s)he has the power to
change everything related to this project or even to remove this
project from VC completely. The Default Right is the right that the
user has for all units:

Upload: means the user can see, upload & download all units in
that project.
Download: means the user can see & download all units in that
project.

Removing a VC project

If you are an Admin for a VC project, then you are also able to
completely remove it from Version Control. You can do this by
clicking the Remove VC Project button to bring up the Version
Control - Remove Project form. Then you can simply select the
project you want to remove and click OK. After confirming your
choice, the VC project you selected will be removed.

[1] If the user you would like to add is not in that list, then you need to contact the VC
responsible in the core EUROMOD team so that (s)he can add this user to the Version
Control platform.

VC forms & functions
This section provides detailed & specialised information for every
form and function in Version Control. In the following pages, you can
find more information about:

VC Settings
Logging in and out
Connecting & Disconnecting a project
New Project
Download Bundle
Start/Finish Merging
New bundle from local version
The Merge Tool
The Merge Tool for Variables
Administrate Content
Administrate Users
Remove Bundles
Add VC Project
Remove VC Project

VC Settings
The button VC Settings in the Version Control ribbon's section USER
opens a dialog which allows users to change the configuration of the
Version Control tool.
The VC settings menu contains two areas: Proxy and Server.

Proxy: It allows configuring a proxy (if needed). To do so, click
on Use proxy configuration and then fill in the Proxy URL
address and Proxy port. Contact your IT department in order to
get this information. If you do no need to configure a proxy,
select Do not use proxy configuration.
Server: It allows selecting the server in which your EUROMOD
projects are stored.

Logging in and out
Logging in
If the user is currently not logged in, the login-button in the ribbon
Version Control shows a door and a green icon (and the text Log In).
Clicking the button opens the login-dialog, which asks for a User
Name or Email address and Password. If these are correctly
provided, the user is logged in, which is visualised by the button now
showing a door and a red symbol (and the text Log Out).

Remember password
If you tick this checkbox your password will be remembered by the
application and you won't need to write it again.

Logging out
If the user is currently logged in, the login-button in the ribbon
Version Control shows a door, a red icon and the text Log Out.
Clicking the button will log the user out, i.e. the button now shows a
door and a green icon (and the text Log In). Moreover, all other
buttons (except for the Merge Tool) in the ribbon are deactivated, i.e.
no version control operations are available until the user logs back
in.

Connecting & Disconnecting a project
Connecting a project
To connect your local project to the version control system, click the
button Connect in the in the Version Control ribbon's section NEW
ONLINE BUNDLE.. The Connect button is only available if the
project is not yet connected to version control, as it changes to
Disconnect when a connection is already established - see below.
Furthermore, this button is only enabled if you are already logged in.
Clicking on the Connect button will bring up the Connect Project to
Version Control form. There you will see a listing of all projects which
are available to you[1] on the version control system. Ticking the
respective project and pressing OK connects the local project (the
one loaded by the interface) to the VC project (the version controlled
project just selected). This is indicated by an informative message,
while the button Disconnect changes its caption to Connect and the
application title bar changes to include the name of the VC project
your local project is connected to. Lastly (but not least), this will
enable most other VC buttons (depending on your access rights).
Please note that every time you close EUROMOD, your local project
will be automatically disconnected from the VC project.

Removing the connection
Once you have finished with any VC-related work you had to do, you
can safely disconnect your local project by pressing the button
Disconnect. This will immediately disconnect your local project from
the VC project it was connected to. The success of this action is
indicated by an informative message, while the button Disconnect
changes its caption to Connect and the application title bar changes
to remove the name of the VC project your local project was
connected to. Lastly (but not least), this will disable most other VC
buttons.

[1] Note that you will not see at all the projects for which you have no access rights. For
more information on VC access rights see Administrate Users

Compare and merge bundle
This form allows users to synchronise their local project with content
from a given VC project/bundle. You can access this form by clicking
the Compare and merge bundle button in the Version Control
ribbon's section ADVANCED OPTIONS.
The process of synchronise your local project is completed in three
steps: choose the VC project, choose the bundle, choose the
actions.

Choose the project
The Project combo-box on the top of the form, will allow you to select
the VC project with which you want to synchronise your local project.
If your local project is already connected to a VC project, then this
VC project will appear preselected in the Project combo-box.
Selecting a VC project will fill the Bundle combo-box with the
available bundles for this project.

Choose the bundle
The Bundle combo-box (located just below the Project combo-box),
will allow you to select a particular bundle (or version) of the VC
project that you want to synchronise your local project with. You can
get more info for a specific bundle after you select it by clicking the
Full Info button next to it. Once you select a given bundle, the
application will download all the bundle details (this may take a
while) and compare each available unit to your local project. This
information will then be displayed in the grid below, listing for each
available unit its Name, Type, Version info (date & bundle it was
commited to), its Local Status and a set of available actions that you
can perform. The Local Status can be:

Corresponds: meaning that the local unit is identical to the VC
unit.
Differs: meaning that the local unit is different to the VC unit.

Missing: meaning that the local unit does not exist at all.

Choose the action for each unit
There are three possible actions for each unit:

Get Online Version: meaning that you will download the VC unit
and overwrite your local unit. Note that any not uploaded
changes of the former local unit will be lost.
Keep Local Version: meaning in fact no action, i.e. the VC unit is
not downloaded.
Get Merge Support: will download the VC unit in a special folder
and build a merging environment allowing you to use the Merge
Tool to consolidate the two versions (VC & local). For more
information on merging see The Merge Tool.

Depending on the Type and Local Status of each unit, some of these
actions may be disabled. For example if your local unit already
corresponds to the VC unit, then all actions will be disabled as there
is nothing further to be done. Similarly, if the unit type is not
supported by the Merge Tool, the Get Merge Support action will be
disabled.
In order to make the action selection process more efficient, just
under the grid on the right side you will also find three buttons that
allow you to change the selected action for all units with one click:
Get All, Keep All and Merge All. These will of course only affect units
for which the action is available.
Once you have selected all the required actions, you can click on the
Download button to complete the synchronisation process.

Start/Finish Merging: Creation of a new
online bundle
If you are working on a given project and you have it on Version
Control (VC), you will regularly find the need to save your work by
uploading it to VC. You can do this by creating and uploading a new
Bundle. This section describes how to merge (upload) a new bundle
in a VC project. Note that in order to do the following, you need to
have the appropriate access rights to create a new bundle for this
project.
Before starting the merge, please open in EUROMOD the bundle
where you implemented your changes and log in to the Version
Control.
Then, follow the steps under the NEW ONLINE BUNDLE group of
the VC ribbon):

1. Connect
Open in EUROMOD the bundle where you implemented your
changes.

2. Start new online bundle
Click on Start new online bundle: This button will lock the online
bundle in order to prevent other users from changing it. If any other
user tries to start a new online bundle for the same project, he/she
will receive a message and will not be allowed to proceed. After
clicking on Start new online bundle, you will be asked to confirm this
action. Click on Yes.
A message will confirm that a new online bundle has been started for
that project. Click on OK.
All users with access to that project will receive an email in which
they will be informed about the fact that you started a new bundle for
that project.

3. Download latest bundle
The latest online bundle should always be used as base for the new
online bundle. This step will download the latest bundle and open it
in EUROMOD so that it can be used as base project. Click on
Download latest bundle and fill in the form:

Select a path to store the project.
Select the components that you would like to download (Note:
Switchablepolicyconfig, hicpconfig, input, varconfig,
exchangerateconfig and em_log should always be downloaded
in order to assure that the downloaded project works properly).
Click on Download .

After the online project has been downloaded, a message will
appear. Click on OK . This project will be automatically opened in
EUROMOD. Another message will inform you about this, click again
on OK .

4. Merge changes in countries

This step will allow you to easily incorporate your changes to the
country spines to the latest online bundle.
In order to do so, first you have to open the country you would like to
merge. To do so, click on Countries and then, on the flag of the
country:
Then, go back to the Version Control tool tab and click on Merge
country. You will be asked if you would like to compare this bundle
with another local bundle. That local bundle should correspond to the
one from which you initiated the process (the one in which you
implemented your changes). Click on Yes.

The merge tool will be opened.

The merge tool contains several tabs for the different elements that
can be compared and merge. It is divided in two sections (local and
remote). The area on the left-hand side displays the values in the
local bundle (this is the one you have just downloaded). The area on
the right-hand side displays the values in the remote bundle (this is
the one from which you initiate the process, the one in which you
implemented your changes).
Accept or reject your changes by right clicking on each change and
then accepting or rejecting them.

Accepting a change means that this value will be copied from
the remote bundle to the local bundle (this is, from the bundle
where you implemented your changes to the bundle you just
downloaded).
Rejecting a change means that your modified value will be
discarded and the original value will remain.

Once all changes have been accepted or rejected, click on Apply.A
message will appear. Click on OK.

If needed, modify the country manually to add additional changes.
Save your changes (Ctrl + S).
Repeat this step (step 4) for all the countries that you need to merge.

5. Merge changes in configuration files
This step will allow you to easily incorporate the changes you have
performed to the configuration files to the latest online bundle.
Click on Merge config files. You will be asked if you would like to
compare this bundle with another local bundle. That local bundle
should correspond to the one from which you initiated the process
(the one in which you implemented your changes). Click on Yes.
Select the configuration file that you would like to compare and click
on OK.

The merge tool contains several tabs for the different elements that
can be compared and merge. It is divided in two sections (local and
remote). The area on the left-hand side displays the values in the
local bundle (this is the one you have just downloaded). The area on
the right-hand side displays the values in the remote bundle (this is
the one from which you initiate the process, the one in which you
implemented your changes).
Accept or reject your changes by right clicking on each change and
then accepting or rejecting them.

Accepting a change means that this value will be copied from
the remote bundle to the local bundle (this is, from the bundle
where you implemented your changes to the bundle you just
downloaded).
Rejecting a change means that your modified value will be
discarded and the original value will remain.

Once all changes have been accepted or rejected, click on Apply. A
message will appear. Click on OK.
If needed, modify the configuration file manually to add additional
changes. Save your changes (Ctrl + S).
Repeat this step (step 5) for all configuration files (VARCONFIG.xml,
EXCHANGERATESCONFIG.xml, HICPCONFIG.xml,
SWITCHABLEPOLICYCONFIG.xml).

6. Update the log file
From the Windows (or any operating system) file explorer, navigate
to the path where you have downloaded the latest version of the
model, access the Log folder and update the EM_LOG.xlsx file with
the latest changes.

7. Upload and finish online bundle
After performing the previous steps (step 1-6), click on Upload and
finish online bundle. You will be asked for confirmation, click on Yes.

Then, select the units that you would like to upload. The ones with
changes will appear as modified.
The version may also be changed by ticking the checkbox Manual
Version and then manually writing the new version. Click on Upload.
Wait until all units are uploaded. A message will appear then. Click
on OK.
Once the new bundle is created, all users with permissions to access
this project will receive an email informing them about the fact that a
new bundle has been created by you for this project.
The online version of the project will also be unlocked once the new
bundle is created so that other users can edit it if needed.

Abort the creation of a new online bundle
The creation of a new online bundle can be aborted at any time by
clicking[4] on the Abort new online bundle button and then clicking
on Yes.
Then click OK on the message that will appear.

[1] The previous steps do not need to be performed at once. If you close EUROMOD in the
middle of the process and then open it again later, EUROMOD will informed you about the
fact that you have an unfinished merge when you connect to the same project again and
you will be allowed to continue creating your online bundle from the same step you were
performing when you closed EUROMOD.

[2] If you would like to continue a merge and you haven't downloaded the latest online
bundle yet (you are still in step 1 or 2), you have to open EUROMOD with the bundle in
which you implemented your changes and then connect to the project and continue the
creation of the new bundle.

[3] If you would like to continue a merge and you have already downloaded the latest online
bundle (you are in step 3 or later), you have to open EUROMOD with the bundle you have
downloaded. After connecting to the project you will be asked if you would like to use the
current bundle as lastest online bundle. Click on Yes to continue from the same step you
were performing when you closed EUROMOD.

[4]Please, notice that if you abort and then decide to create a new online bundle, you will
have to start the process from the very beginning.

The Merge Tool
The user interface provides a tool that supports the merging of two
versions of a country or add-on. Imagine developer A and developer
B both have worked on country X. The tool firstly allows viewing
what was changed between the two versions. Secondly, the tool
offers facilities to determine which changes are to be overtaken in
the final merged version.
Please note that the following description, for simplicity reasons,
refers to countries only though all descriptions apply for add-ons as
well.

Selecting the versions
Clicking the button Merge Country (in the NEW ONLINE BUNDLE
section) or Compare & merge country (in the ADVANCED OPTION
section)in the VC ribbon opens a dialog which allows defining the
versions which are to be compared and merged, whereupon one of
the versions is always the country, which is currently loaded by the
user interface and from which the dialog was started. This version is
referred to as the Local Version.
Consequently, the dialog allows for loading a Remote Version,
which is the country folder containing the version (i.e. XML-files) that
should be compared and merged with the Local Version.
Moreover, a Parent Version can be selected from the Advanced
options. This is the version from which as well the local as the
remote version started from, i.e. ideally the base where the two
versions diverged. This parent version is used by the interface
(solely) to decide whether a change occurred in the local version or
in the remote version.[1]
Taking into account, that a parent version may not always be
available, the dialog allows that either the local (by checking the box
Use Local) or the remote version (by checking the box Use Remote)
may be defined as the parent version, meaning that all changes are

considered as remote respectively local. By default (without selecting
any parent version from the advanced options), the local version will
be defined as parent version.
Clicking OK performs the comparison, which, depending on the
extent of differences, may take a while, and opens the merge dialog.

The merge dialog
The merge dialog is split up into three areas:

The (small) upper part displays changes in the country settings
(see Representation of changes in country settings)
The (big) middle part displays all other changes (see
Representation of changes)
The (small) lower part comprises three buttons, which allow for
performing the merge (see Performing the merge - button Apply)
or interrupting one's work by optionally saving the so far taken
definitions (see Interrupting one's work - buttons Save and
Close).

Representation of changes
The middle and main part of the merge dialog comprises a register
with the following four tabs:

Systems: This tab lists added and deleted systems as well as
changes in system settings.
Policy-Spine: Is the main tab and displays all changes in the
policy spine, i.e. added and deleted policies, functions and
parameters; changes in policy/function-switches and parameter
values; other changes in policies, functions and parameters, like
e.g. changed name, comment, etc.
Data: This tab lists added and deleted datasets as well as
changes in dataset settings. In addition, it shows changes in the

systems which can be used with the datasets. Moreover, it lists
changes in the settings of policy-switches.
Conditional Formatting: This tab lists changes in conditional
formatting settings.
Uprating indices: This tab lists changes in uprating indices.
Indirect taxes: This tab lists changes in indirect taxes.
External statistics: This tab lists changes in external statistics.
Extensions: This tab lists changes in extensions.
Switches: This tab lists changes in switches.
Groups: This tab lists changes in groups.

The structure of the eight tabs is very similar and will be described
by means of the main tab, the Policy-Spine tab.
The main part of each tab is taken by two "lists" (with tree-structure,
to allow for collapsing and expanding the information), where the left
one presents the local spine, whereas the right one presents the
remote spine. The two lists are synchronised so that one can see
local and remote spine side-by-side. That means, amongst others,
that expanding or scrolling in one of the two lists always effects in
the same move of the other list. Initially the two spines are an extract
of the two spines, in the sense that only those parts of the spine are
displayed which contain changes. Please note that, given the tree-
structure of the list, this means that if e.g. a parameter is changed
the parent-function and parent-policy is visible too. However, the
sibling-parameters are not displayed, neither the "aunt"-functions
(unless they show changes as well). This initial view can be further
reduced by filtering changes, as described below, or extended to the
full spine by pressing the button Release Filter.
The bottom part of the tab fulfils two tasks: The left-bottom-part
allows for filtering the changes. That means it provides options to
show only certain types of changes. As an example, one may want
to see only added and removed policies, but not anything else (i.e.

added/deleted functions/parameters should be not displayed, neither
changes in values switches or other settings of policies, functions
and parameters).
The right-bottom-part allows for accepting and rejecting changes, i.e.
determining which changes are to be overtaken into the merged
version. For more information see Defining the carrying out of the
merge below.

Types and representation of changes
In principle, there are three types of changes:

Additions (of policies, functions and parameters) are displayed
by a green plus at the left edge of the spine.
Accordingly, removals are displayed by a red minus.
Changes are marked by a pencil. Note that changes may
concern parameter-values or policy/function-switches, as well
as parameter/function/policy-settings (like e.g. comments,
private-settings, etc.). Accordingly, each policy, function and
parameter is accompanied by columns containing these
settings, as well as the value/switch-settings per system. This
means that a "change" (display of a pencil) in e.g. a policy may
mean that the policy switch is changed in one or more systems
and/or that any policy-setting, like e.g. its name, is changed.
Which of these settings is changed is represented by
highlighting the respective cell with either red or green colour
(the meaning of red and green will be explained in the
paragraph after the next).

Whether a change is local or remote is represented by showing the
plus/minus/pencil and the highlighting in either the (left) local tree or
the (right) remote tree. Note that for added components the
respective other tree shows an empty row (as the component does
not exist in this version). For deleted components, the concerned

tree shows the name (for better understanding), while the other tree
(where the component still exists) shows the full information.
Alongside each change-symbol (plus/minus/pencil) there is another
symbol, which indicates whether the change is accepted or rejected,
i.e. should go into the merged version or not. Accepted changes are
accompanied by a green hook, whereas rejected changes are
accompanied by a red cross. Moreover, there is a third symbol, an
arrow pointing to the right. This symbol may show up if e.g. a policy
has several changes, i.e. the name and the comment is changed,
and/or the switch is changed in more than one system. The arrow is
displayed if these changes are partly accepted and partly rejected.
Whether the changes are accepted or rejected, is represented by the
colour of the highlighting. Green highlighting marks an accepted
change, while red highlighting marks a rejected change.

Special display of order-changes
Given the fact that the local and the remote spine are synchronised,
in the sense that "twin"-polices, functions and parameters are
displayed side-by-side, the order of the spine is not necessarily
correctly displayed, as it may differ between local and remote
version.[2]
For watching the real order, and possibly assess differences in the
order of the local and the remote spine, a special column can be
shown. This is accomplished by clicking the button Show Order. The
column shows entries like LR:7 or L:7/R:8, where the former, if
displayed with a function, means, that the function is in both spines
the 7th within its parent-policy. The latter means, that the function is
the 7th in the Local spine whereas it is the 8th in the Remote spine.
Note that "parallelism" is not affected by new or removed
components. For example orders like local PolA-PolB-PolC-PolD
and remote PolA-PolB-newPolBC-PolC-PolD would be numbered
as PolA(LR:1)-PolB(LR:2)-newPolBC(L:R:3)-PolC(LR:4)-
PolD(LR:5).

Also note that for a full view of the order you may want to show the
full spine by clicking the button Release Filter.
As it would however be rather cumbersome to watch out for order
changes in the order-column, policies and functions where the
function- respectively parameter-order differs in local and remote
spine are marked by a highlighted (green or red) button at the very
left edge of the local spine. Differences in the order of policies are
indicated by a highlighted button at the very left of the heading-row
of the local spine.

Filtering changes
The merge tool offers, in the left-bottom part of the dialog, several
options to hide and show different types of changes, with the intent
to provide the user with a better overview.
Remote / Local:

Local and Remote: With this option checked as well local as
remote changes are displayed.
Local only: With this option checked only local changes are
displayed. For a better understanding note that the displays of
the local and remote spine are still synchronised, i.e. show the
same policies, functions and parameters. However, if for
example a function is changed in the remote version, but not in
the local version, this function will not be visible (neither in the
local nor in the remote spine).
Remote only: With this option checked only remote changes are
displayed, in the same sense as described above for Local only.

Type:

Added: Checking this option effects that added policies,
functions and parameters are displayed (unless they are out-
ruled by a Level- or Remote/Local-filter), while unchecking the
option means that added policies are not displayed.

Removed: Checking/unchecking this option effects the same for
removed components as described above for added
components.
Reordered: Checking/unchecking this option effects the same
for policies and function with different function- respectively
parameter-order in the two spines as described above for added
components.
Changed: In principle checking/unchecking this option effects
the same for changed components as described above for
added components. However, the filter can be further refined by
showing only selected types of changes:

All Settings / Selected Settings: If the option All Settings is
checked, all components with changes in any setting
(name, comment, private, ...) are shown. This can however
be restricted to, e.g. only show components where the
comment is changed, by unchecking All Settings and
therewith enable the check-boxes alongside the single
settings. The task is accomplished by unchecking all single-
settings except the Comment-setting (and perhaps the
Name-setting for a better overview).
All Values / Selected Values: This option works in the same
manner for parameter-values and policy/function-switches
per system as described above for Settings.

Level:

Parameter: Selecting this option corresponds in fact to no Level-
filter.
Function: Selecting this option effects that only changes on
policy- and function level are displayed, i.e. parameter-level
changes are hidden.
Policy: Selecting this option effects that only changes on policy-
level are displayed, i.e. function- and parameter-level changes

are hidden.

Please note that the filters only take effect once the button Apply /
Update Filter is clicked.
As mentioned above, the button Release Filter effects the display of
the full spine, i.e. suspends all filters.

Defining the carrying out of the merge
Initially the merge tool suggests accepting all changes, i.e. overtake
them into the merged version. This is reflected by green hooks and
green highlighting. Only if there is a conflict, i.e. a component was
changed in the local version as well as in the remote version, the
local version is preferred, i.e. the remote version shows a red cross
(or left-arrow) and possibly a red highlighting. This default setting
can be changed in several ways.

Accepting / rejecting all changes
In the left-bottom part of the dialog the merge tool offers the buttons
Accept All and Reject All to accept respectively reject all changes.
For technical reasons (in context with conflict cases)
accepting/rejecting all changes can be only done for one version at
once. In other words, if one wants to accept all, i.e. local and remote,
changes, one needs to firstly activate the option Local, then click the
respective button, to repeat the same by activating the option
Remote.
Still what "all" effectively means depends on the option Visible Only.
If the option is not activated "all" actually means all. However, if the
option is activated, filters are taken into account, which is described
under Effectiveness of filters below.
Accepting all (local or remote) changes may lead to conflicts, where
the tool needs the user's decision on what to do. For example, if all
remote changes are to be accepted and a policy's comment was
changed in the local version as well as in the remote version (i.e.
both differ from the parent version), and the respective local change

is currently set to being accepted, there is a conflict that cannot be
solved by the tool without further information. For such cases, the
handling is determined by the options under Conflicts -Prefer If
the option Local is selected, the tool will automatically keep the
acceptance of the local change and not set the remote change to
accept. If the option Remote is selected, the tool will set the remote
change to accept and automatically reject the local change. If the
option Warn is selected, the tool issues a warning for each conflict
that it is about to act as if the option Remote (in case of Accept All
remote changes) was selected and allows the user to refuse this
doing.

Effectiveness of filters
If the option Visible Only is activated, filters are taken into account.
For example, assume that the option Added is activated only, while
the check-boxes for Removed, Reordered and Changed are not
ticked. In this case the list of changes would only show added
components. Respectively clicking for example Accept All will only
accept the addition of components, but not the removal, change or
reordering. Note however, that no definition set before the clicking of
the button will be reset, i.e. an already accepted removal would not
be changed to rejected.
For clarification, it should also be mentioned that "visible" refers to
filters and not to actual visibility. That means missing visibility due to
collapsing has no effect.

Accepting / rejecting single changes
Accepting and rejecting of changes can also be fine-tuned to single
policies, functions and parameters and even to single settings,
parameter-values and policy/function-switches. For this purpose, the
merge tool provides context menus.
Right-clicking the change-symbols (plus/minus/pencil or hook/cross)
left of the changed component opens a context menu with the
options Accept Changes, Reject Changes and a check-box Visible
Only. The logic behind this is the same as described under

Accepting / rejecting all changes, just that the reference is the
respective policy, function or parameter (i.e. all changed
values/switches and settings) instead of all. Please note that, if you
have selected multiple rows (with shift or ctrl) and the row you right-
clicked was among the selected rows, the change will be applied to
all selected rows and not only to the right-clicked one.
Right-clicking the cell of a single change, e.g. the change of the
value of a parameter within a certain system, offers the same context
menu, except that the option Visible Only is not available as it does
not make sense. Again, the logic behind this is the same as
described above, just that the reference in this case is the single
change instead of all changes of the parameter's values and
settings.
A very similar context menu is offered by right-clicking an "order
change", i.e. one of the highlighted buttons at the very left edge of
the local tree. In this case the context menu offers the options
Accept Order, Reject Order and a check-box Include Sub-Nodes.
Selecting Accept Order means that the local order is to be taken as
the relevant for the merged version. Selecting Reject Order means
that the local order is rejected and thus that the remote order is
taken as the relevant for the merged version. Ticking the check-box
Include Sub-Nodes effects that the relevant order for "children"
(functions and parameters in the case of policies; parameters in the
case of functions) is the same as that for the "parent". This means
selecting an order for the button concerning the spine (the button
alongside the column-headers) implies selecting an order for all
policies, functions and parameters of the merged version.

Representation of changes in country settings
The upper part of the merge dialog displays the country-settings of
the local (on the left side) and the remote version (right of it).
Concretely it shows the name of the country (e.g. Austria, Hungary,
Romania) and whether the country is "private" or not. If these
settings are different in the local and the remote version, the
changed-symbol (pencil) is displayed alongside the setting, together

with either the accept-symbol (green hook) or the reject-symbol (red
cross). Clicking this symbol opens a context menu with the options
Accept and Reject.

Interrupting one's work - buttons Save and Close
If there are many differences between the local and the remote
version it may take quite some consideration to decide what should
go into the finally merged version. Therefore, the merge tool
provides a Save button for saving all the so far taken decisions on
accepting and rejecting changes. The merge tool and even the
whole interface can then be closed without loss of the so far
accomplished work. Upon the next time the merge tool is opened for
the respective country, the user interface asks whether the "in-
progress merging" should be used or not.
Note that opening the merge tool with a saved version also reduces
the loading time as the comparison of the local and the remote
version does not have to be repeated.
Also note that the question whether an "in-progress merging" is to be
used is even asked if the merge tool is closed by the Close button,
i.e. accepting/rejecting changes is not saved. The user interface then
refers to the copies of the local-, remote- and parent-version of the
country it made at the first opening of the merge tool (in a sub-folder
of the country folder, called Merge). In this case the comparison of
versions has to be repeated and loading is not accelerated.
As however these copies in the Merge folder are at risk to being
outdated in the sense that the local version diverges from the actual
country version, the interface performs a respective comparison and,
if necessary, warns that "the info is possibly not up-to-date".

Performing the merge - button Apply
Pressing the Apply button will perform the merge by taking the
decisions on accepting or rejecting changes into account. Once
accomplished the user interface shows this merged version. All
intermediate info (concretely the Merge folder within the country
folder) is deleted.

Please note that the tool may show the info that "... the local XML-
files used for merging are possibly not up-to-date". This happens if
the country was changed while merging was in progress (see
Interrupting one's work - buttons Save and Close). It is up to the user
to decide whether she still wants to perform the merge.
Finally note that the changes caused by the merge cannot be
undone by using the undo functionality. However, the user interface
produces a backup before starting the action, which can be restored
via the button Restore in the ribbon Country Tools. For more
information see (Working with EUROMOD - Backup - Restore).

[1] Technically that means that, for a beginning, local and remote version are directly
compared. A difference between the two is then considered as local change, if remote and
parent version match and as remote change, if local and parent version match. If both, local
and remote version, diverge from parent version, the change is classified as a "conflict".

[2] In fact the order may not reflect the real one for both spines, as for simplicity reasons it
follows the location in the XML-file, which is arbitrary and especially for new components
frequently different from the real order.

The Merge Tool for Configuration files
The user interface provides a tool that supports the merging of two
versions of the EUROMOD configuration files: VARCONFIG.xml,
EXCHANGERATESCONFIG.xml, HICPCONFIG.xml,
SWITCHABLEPOLICYCONFIG.xml (see Working with EUROMOD -
Administration of EUROMOD variables and EUROMOD Installation
and Architecture - EUROMOD content (parameter files)). Imagine
developer A and developer B both have edited EUROMOD
configuration files. The tool firstly allows viewing what was changed
by developer A and what by developer B.[1] Secondly, the tool offers
facilities to determine which changes are to be overtaken in the final
merged version.

Selecting the versions
Clicking the button Merge config files (found in the Administration
Tools or Version Control ribbon, depending on whether you have
Version Control installed) opens a dialog which allows defining the
versions which are to be merged, whereupon one of the versions is
always one of the EUROMOD configuration files, which is currently
loaded by the user interface. This version is referred to as the Local
Version.
Consequently, the dialog allows for loading a Remote Version,
which is the EUROMOD configuration file that should be merged
with the Local Version.
Moreover, a Parent Version can be selected from the Advanced
Options. This is the version from which as well the local as the
remote version started from, i.e. ideally the base where the two
versions diverged. This parent version is used by the interface
(solely) to decide whether a change occurred in the local version or
in the remote version.[2]
Taking into account, that a parent version may not always be
available, the dialog allows that either the local (by checking the box
Use Local) or the remote version (by checking the box Use Remote)

may be defined as the parent version, meaning that all changes are
considered as remote respectively local. By default (without selecting
any parent version from the advanced options), the local version will
be defined as parent version.
Clicking OK performs the comparison, which, depending on the
extent of differences, may take a while. The duration of the check is
considerably increased if all country-specific descriptions have to be
compared when comparing the VarConfig.xml file. Therefore, a
checkbox Skip Country-Label Check allows for skipping this check.
Once the comparison is finalised the merge dialog is opened.

The merge dialog
The merge dialog is split up into two areas.

The (big) upper part displays the changes (see Representation
of changes)
The (small) lower part comprises three buttons, which allow for
performing the merge (see Performing the merge - button Apply)
or interrupting one's work by optionally saving the so far taken
definitions (see Interrupting one's work - buttons Save and
Close).

Representation of changes
When comparting the VarConfig.xml files, the upper and main part of
the merge dialog comprises a register with the following three tabs:

Variables: This tab lists changes of the EUROMOD variables,
i.e. added and deleted variables as well as changes in variables
settings.
Acronyms: This tab displays changes in the acronyms by which
EUROMOD variables are built (see Working with EUROMOD -
Administration of EUROMOD variables).

Country Labels: This tab lists changes in the country-specific
descriptions of the variables.

When comparting other files, only one tab appears.
The structure of the tabs is very similar. The main part of each tab is
taken by two "lists", where the left one presents the local version,
whereas the right one presents the remote version. The two lists are
synchronised so that one can see local and remote version side-by-
side. That means, amongst others, that expanding or scrolling in one
of the two lists always effects in the same move of the other list.
Initially the two lists are an extract of the two versions, in the sense
that only those parts are displayed which contain changes. This
initial view can be further reduced by filtering changes, as described
below.
The Acronym-tab is different from the other three tabs in the sense
that it shows a tree-structure, i.e. acronyms (e.g. the acronym ur for
urban) are arranged in acronym-levels (e.g. the acronym-level
region), which are themselves arranged in acronym-types (e.g. the
acronym-type Demographic).[3] This tree-structure allows for
collapsing and expanding the information, and therewith for more
clearness.[4]
Another mentionable, though seldom relevant, particularity concerns
the Country-Labels-tab. If a whole country is added or removed from
the user interface, this causes that (possibly empty) country-specific
descriptions are added/removed to/from all variables. This is
indicated by the entry "Labels for country 'CC' added/removed" in the
list of changes.
The bottom part of the tab fulfils two tasks: The left-bottom-part
allows for filtering the changes. That means it provides options to
show only certain types of changes. As an example, one may want
to see only added variables, but not anything else (i.e. deleted or
changed variables).
The right-bottom-part allows for accepting and rejecting changes, i.e.
determining which changes are to be overtaken into the merged

version. For more information see Defining the carrying out of the
merge below.

Types and representation of changes
In principle, there are three types of changes:

Additions (of e.g. variables) are displayed by a green plus at
the left edge of the list.
Accordingly, removals are displayed by a red minus.
Changes are marked by a pencil. A "change" of e.g. a variable
may mean that the name of the variable is changed or that the
monetary-status of the variable is changed. Which of these
settings is changed is represented by highlighting the respective
cell with either red or green colour (the meaning of red and
green will be explained in the paragraph after the next).

Whether a change is local or remote is represented by showing the
plus/minus/pencil and the highlighting in either the (left) local tree or
the (right) remote tree. Note that for added components the
respective other tree shows an empty row (as the component does
not exist in this version). For deleted components the concerned tree
shows the name (for better understanding), while the other tree
(where the component still exists) shows the full information.
Alongside each change-symbol (plus/minus/pencil) there is another
symbol, which indicates whether the change is accepted or rejected,
i.e. should go into the merged version or not. Accepted changes are
accompanied by a green hook, whereas rejected changes are
accompanied by a red cross. Moreover, there is a third symbol, an
arrow pointing to the right. This symbol may show up if e.g. a
variable has several changes, i.e. the name and the monetary-status
is changed. The arrow is displayed if these changes are partly
accepted and partly rejected. Whether the changes are accepted or
rejected, is represented by the colour of the highlighting. Green

highlighting marks an accepted change, while red highlighting marks
a rejected change.

Filtering changes
The merge tool offers, in the left-bottom part of the dialog, several
options to hide and show different types of changes, with the intent
to provide the user with a better overview.
Remote / Local:

Local and Remote: With this option checked as well local as
remote changes are displayed.
Local only: With this option checked only local changes are
displayed. For a better understanding note that the displays of
the local and remote list are still synchronised, i.e. show the
same components. However, if for example a variable is
changed in the remote version, but not in the local version, this
variable will not be visible (neither in the local nor in the remote
list).
Remote only: With this option checked only remote changes are
displayed, in the same sense as described above for Local only.

Type:

Added: Checking this option effects that added components are
displayed (unless they are out-ruled by a Level- or
Remote/Local-filter), while unchecking the option means that
added components are not displayed.
Removed: Checking/unchecking this option effects the same for
removed components as described above for added
components.
Changed: In principle checking/unchecking this option effects
the same for changed components as described above for
added components. However, the filter can be further refined by
showing only selected types of changes:

All Settings / Selected Settings: If the option All Settings is
checked, all components with changes in any setting are
shown. This can however be restricted to, e.g. only show
components where a certain setting (e.g. name) is
changed, by unchecking All Settings and therewith enable
the check-boxes alongside the single settings. The task is
accomplished by unchecking all single-settings except the
Name-setting.

Level: This option is only available in the Acronyms-tab.

Category: Selecting this option corresponds in fact to no Level-
filter.
Acronym: Selecting this option effects that changes of acronym-
categories are hidden.
Level: Selecting this option effects that only changes on
acronym-level are displayed, i.e. acronym- and category-level
changes are hidden.
Type: Selecting this option effects that only changes on
acronym-type are displayed, i.e. acronym-level-, acronym- and
category-level changes are hidden.

Please note that the filters only take effect once the button Apply /
Update Filter is clicked.
The button Release Filter suspends all filters, i.e. all changes are
displayed. Note that this still does not mean that e.g. all EUROMOD
variables are displayed, but only variables which show any changes,
were added or deleted. For technical reasons Release Filter pressed
in the Acronym-tab effects, that all acronyms (including unchanged)
are displayed.[5]

Defining the carrying out of the merge
Initially the merge tool suggests accepting all changes, i.e. overtake
them into the merged version. This is reflected by green hooks and

green highlighting. Only if there is a conflict, i.e. a component was
changed in the local version as well as in the remote version, the
local version is preferred, i.e. the remote version shows a red cross
(or left-arrow) and possibly a red highlighting. This default setting
can be changed in several ways.

Accepting / rejecting all changes
In the left-bottom part of the dialog the merge tool offers the buttons
Accept All and Reject All to accept respectively reject all changes.
For technical reasons (in context with conflict cases)
accepting/rejecting all changes can be only done for one version at
once. In other words, if one wants to accept all, i.e. local and remote,
changes, one needs to firstly activate the option Local, then click the
respective button, to repeat the same by activating the option
Remote.
Still what "all" effectively means depends on the option Visible Only.
If the option is not activated "all" actually means all. However, if the
option is activated, filters are taken into account, which is described
under Effectiveness of filters below.
Accepting all (local or remote) changes may lead to conflicts, where
the tool needs the user's decision on what to do. For example, if all
remote changes are to be accepted and a variable's name was
changed in the local version as well as in the remote version (i.e.
both differ from the parent version), and the respective local change
is currently set to being accepted, there is a conflict that cannot be
solved by the tool without further information. For such cases, the
handling is determined by the options under Conflicts -Prefer If
the option Local is selected, the tool will automatically keep the
acceptance of the local change and not set the remote change to
accept. If the option Remote is selected, the tool will set the remote
change to accept and automatically reject the local change. If the
option Warn is selected, the tool issues a warning for each conflict
that it is about to act as if the option Remote (in case of Accept All
remote changes) was selected and allows the user to refuse this
doing.

Effectiveness of filters
If the option Visible Only is activated, filters are taken into account.
For example, assume that the option Added is activated only, while
the check-boxes for Removed and Changed are not ticked. In this
case the list of changes would only show added components.
Respectively clicking for example Accept All will only accept the
addition of components, but not the removal or change. Note
however, that no definition set before the clicking of the button will be
reset, i.e. an already accepted removal would not be changed to
rejected.
For clarification, it should also be mentioned that "visible" refers to
filters and not to actual visibility. That means missing visibility due to
collapsing has no effect. This is however only relevant for the
Acronyms-tab.

Accepting / rejecting single changes
Accepting and rejecting of changes can also be fine-tuned to single
components and even to single settings. For this purpose, the merge
tool provides context menus.
Right-clicking the change-symbols (plus/minus/pencil or hook/cross)
left of the changed component opens a context menu with the
options Accept Changes, Reject Changes and a check-box Visible
Only. The logic behind this is the same as described under
Accepting / rejecting all changes, just that the reference is the
respective component (e.g. variable) instead of all.
Right-clicking the cell of a single change, e.g. the change of the
name of a variable, offers the same context menu, except that the
option Visible Only is not available as it does not make sense. Again,
the logic behind this is the same as described above, just that the
reference in this case is the single change instead of all changes of
the variable's settings.

Interrupting one's work - buttons Save and Close

If there are many differences between the local and the remote
version it may take quite some consideration to decide what should
go into the finally merged version. Therefore, the merge tool
provides a Save button for saving all the so far taken decisions on
accepting and rejecting changes. The merge tool and even the
whole interface can then be closed without loss of the so far
accomplished work. Upon the next time the merge tool is opened,
the user interface asks whether the "in-progress merging" should be
used or not.
Note that opening the merge tool with a saved version also reduces
the loading time as the comparison of the local and the remote
version does not have to be repeated.
Also note that the question whether an "in-progress merging" is to be
used is even asked if the merge tool is closed by the Close button,
i.e. accepting/rejecting changes is not saved. The user interface then
refers to the copies of the local-, remote- and parent-version it made
at the first opening of the merge tool (in a sub-folder of the Config-
folder, called Merge). In this case the comparison of versions has to
be repeated and loading is not accelerated.
As however these copies in the Merge folder are at risk to being
outdated in the sense that the local version diverges from the
interface's actual version, the interface performs a respective
comparison and, if necessary, warns that "the info is possibly not up-
to-date".

Performing the merge - button Apply
Pressing the Apply button will perform the merge by taking the
decisions on accepting or rejecting changes into account. Once
accomplished the user interface shows this merged version. All
intermediate info (concretely the Merge folder) is deleted.
Please note that the tool may show the info that "... the local XML-
files used for merging are possibly not up-to-date". This happens if
the configuration file was changed while merging was in progress

(see Interrupting one's work - buttons Save and Close). It is up to the
user to decide whether she still wants to perform the merge.
Finally note that the changes caused by the merge cannot be
undone by using the undo functionality. However, the user interface
produces a backup before starting the action, which can be restored.
For more information see (Working with EUROMOD - Backup -
Restore).

[1] More precisely, the assignment of changes to one developer can only be accomplished if
there is a common base version. Otherwise the user interface has to assume all changes to
be done by one developer.

[2] Technically that means that, for a beginning, local and remote version are directly
compared. A difference between the two is then considered as local change, if remote and
parent version match and as remote change, if local and parent version match. If both, local
and remote version, diverge from parent version, the change is classified as a "conflict".

[3] To be precise, there are four levels, as the acronym-level may be further subdivided into
categories, e.g. the acronym in for industry into categories agriculture, industry and
services.

[4] Please note that this means that if an acronym is changed the parent-level and parent-
type is visible too. However, the sibling-acronyms are not displayed, neither the "aunt"-
levels (unless they show changes as well).

[5] The "technical reason" is that the configuration files merge tool uses the same platform
as the merge tool for countries/add-ons. In the context of a country it sometimes makes
sense to see the whole spine, instead of only changed parts of the spine. In contrast,
viewing all variables does not help to understand the change in a particular variable. Thus,
to enhance performance, only the "relevant" (i.e. changed) components are loaded. For
acronyms, there is no gain in performance in only loading the changed parts (rather, due to
the tree-structure, it is more complicated), therefore they are completely loaded.

Administrate Content
Pressing the button Administrate Content in the Version Control
ribbon's section NEW VC PROJECT opens a dialog which displays
all the units that are common between the VC project and the local
project. This dialog allows for three operations:

a. Adding Local Units to the VC project
b. Downloading units of the VC project locally
c. Removing units from the VC project

Add Local Units to VC
Pressing this button lists units which exist locally, but do not exist
in the VC project. The essential purpose of this operation is making
a unit (existing in the loaded project) version controlled. By selecting
the respective units from the list and pressing OK, the units will be
"made version controlled", which, expressed more precisely,
comprises two operations: Firstly, the local version of the unit is
uploaded to VC and thus forms the first (remote) version of the unit.
Secondly, the local and the (new) remote version are linked.
A new version of the project will be created if new units are added to
VC. You can change the version number by clicking on Manual
Version and writing the version.

Get Units from VC
Pressing this button lists units which do not exist locally, however
they exist in the VC project. The essential purpose of this
operation is to download a unit from the remote VC project and
include it in your local project. By selecting the respective units from
the list and pressing OK, the most recent version of the units will be
"downloaded" and added to your local project.

Remove Units from VC

Pressing this button lists units which exist both locally and on the
VC project. The essential purpose of this operation is to remove
units from the VC project. By selecting the respective units from the
list and pressing OK, the units are removed from the VC project.
A new version of the project will be created if new units are added to
VC. You can change the version number by clicking on Manual
Version and writing the version.

Administrate Users
Pressing the button Administrate Users in the Version Control
ribbon's section NEW VC PROJECT opens a dialog which allows
for:

Adding and removing users from the currently connected VC
project
Defining users' rights for the currently connected VC project

Please note that these operations are only available to users which
have administration rights for the project (see below).
The main part of the dialog lists all users which are part of this VC
project and for each of them their respective access rights[1].

Add Users
Pressing this button opens a dialog showing all users which
potentially can be added to the project's VC. That means they are
registered with the VC System but not yet users of the particular
project. Ticking the respective users and pressing the button OK
adds the users to this VC project, which means that they are now
shown in the main-dialog's list of users. Initially the new users have
download rights. For information on how to grant them with other
rights see Defining users' rights below.

Remove Users
Users are removed from the project's VC by selecting them[2] and
pressing the button Remove Users. The dialog asks for confirmation
of this operation to avoid unintended removal.
Note that the actual addition or removal of users from the project's
VC actually only takes place once the main-dialog is closed with OK.
If the dialog is closed with Cancel no action takes place and thus all
changes can still be undone.

Defining users' rights
A user can (or cannot) have the right to perform three types of
version control operations: downloading units from VC, uploading
units to VC and administrative operations. They are displayed and
manipulated via the list of users in the Version Control - Administrate
Users dialog.

Administration Right
This checkbox defines whether the listed user may administrate the
project (ticked) or not (not ticked). Administration tasks are adding
and removing units to/from the project's VC and administrating users
and their rights.

Default Right
This column takes the values Download or Upload. The right can be
changed by selecting another value from the list.

Download: This means that the user has the right to download
units (e.g. countries). The user is however not allowed to upload
any own versions to VC.
Upload: This means that the user has the right to download
units and also to upload new versions.

[1] The Version Control Administrator user is also added by default in all the projects, this
user cannot be removed.

[2] The selection mechanism follows the usual Windows standards. That means that, to
selectseveral users, you can click on them while holding the Ctrl-key. Alternatively, click on
the first user, press the shift key and select the last user. Selected users are marked by blue
background colour.

Remove Bundles
From time to time you may find yourself in a situation (e.g. due to a
human error) where you need to remove an already committed
bundle. Assuming that you are already logged in, connected to a
project, you can do this by clicking the Remove Bundle button in the
Version Control ribbon's section ADVANCED OPTIONS to bring up
the Version Control - Remove Bundles form.
The Version Control - Remove Bundles form displays a list with
detailed information on all available bundles of this VC project. This
list includes the exact date and time each bundle was generated, the
version name and the username of the Author of this particular
bundle. Each bundle also has a checkbox on the left, allowing to
select them.
Once you have selected the bundle(s) you want to remove, you can
do so by clicking the Remove Bundle(s) button on the right.

Add VC Project
You can create a new VC project by clicking the Add VC Project
button, which you can find in the NEW VC PROJECT section of the
VC ribbon. In order to do this, you need to be logged in to Version
Control and also to have the required access rights. Please note that
the dialog suggests the name of the local project[1] (i.e. the project
loaded by the user interface). Also note, that if you are already
connected to a VC project, you will be asked to disconnect first. After
typing the project's name, pressing the button OK generates the new
project remotely (i.e. on the version control system). This is
confirmed by a respective success message and you are also
automatically connected to the new VC project.
As a next step you would then need to click the Administrate Content
button to add your local units to the new VC project (see
Administrate Content).
Please note that the new VC project, after creation, has only one
user[2], i.e. the user that generated the project. The user has full
admin-rights on the project and may want to add other users by
clicking the Administrate Users button (see Administrate Users).

[1] The name of a not version controlled project is the name of the folder where the project
content is stored in.

[2] The Version Control Administrator user is also added by default in all the projects, this
user cannot be removed.

Remove Project
To remove a project from the version control system, press the
Remove VC Project button in the ADVANCED OPTIONS group of
the VC ribbon. Note that for this to work, you need to be already
logged into Version Control and you need to have the required rights
to remove projects. Pressing the Remove VC Project button opens
the Version Control - Remove Project dialog. This lists all projects
currently available on the version control system. By selecting a
project and pressing OK the respective project is completely and
irrevocably removed from the version control system.
Note that the operation does not affect the local project (the project
loaded by the user interface), even if this local project is linked to the
just removed remote project.

New bundle from local version
Assuming that you are already logged in and connected to a project,
the New bundle from local version button in the ADVANCED
OPTIONS section will allow you to create a new bundle using your
local version of the project. This version will upload directly the
changes in the local version without comparing them with the lastest
version available online and without following the steps under NEW
OLINE BUNDLE[1].
To use this option click on Start new online bundle in the NEW
ONLINE BUNDLE section and then on New bundle from local
version button in the ADVANCED OPTIONS sections to open the
Upload Bundle form.
Select the units that you would like to upload. The ones with
changes will appear as modified. The version may also be changed
by ticking the checkbox Manual Version and then manually writing
the new version. Click on Upload.

[1] This option should be used only under exceptional circumstances. Please, follow the
steps under Start/Finish merging to create a new online bundle.

Connecting to a VC project
The following explanations describe how most users will initially
come into contact with EUROMOD version control. That is by, firstly,
logging-in to the EUROMOD version control system and, secondly,
by establishing a connection between their local project and a VC
project stored on version control.

Logging-in to the EUROMOD version control system
The first time you go to the Version Control ribbon, you will see (at
the very left) a closed door with the text Click to Log In underneath.
Clicking this button will open the login dialog. The dialog asks you for
a User Name and Password. Both should be at your disposal; if not,
then you have to get them from the EUROMOD team. Once you
enter the required information and click OK, the connection to the
EUROMOD version control system is established.[1] Note that every
time you close EUROMOD you are automatically logged out and you
will need to repeat this process.
Now you are connected to the EUROMOD version control system.
The user interface visualises this by showing a door with a red sign
(with the text Log Out) instead of the door with the green sign.
Moreover, you are now able to perform several actions (depending
on your access rights), such as downloading a bundle or even some
of the admin functions, such as creating/removing a project in VC.
Still, in order to unlock the full capabilities of Version Control, you
need to connect your local project to a VC project. The necessary
steps to establish such a connection are described in the next
section.

Establishing connection to a VC project
The Version Control ribbon shows in the section NEW ONLINE
BUNDLE a chain symbol with the text Connect underneath.
Following this instruction opens a dialog which offers all available
Version-Controlled (VC) Projects for selection. Which projects are

available and thus displayed depend on your user rights[2]. To
connect your local project to one of the available VC projects, you
need to select it and press OK.
Once your local project is connected with a VC project, this will show
on the application's title bar where the text "Connected to VC:
<ProjectName>" will be added to the local project information.
Furthermore, you will now be able to complete more VC actions,
such as starting a new merge or administering the VC project. Note
that as soon as you connect to a VC project, you will get a
notification in case there is someone currently performing a merge,
or there is an unfinished merge pending by yourself.

Synchronising local project with a VC project
There are two reasons for synchronising your local project with a VC
project: either you need to take the latest available version online to
update your local project, or you may want to upload your latest
changes to the VC project (or a combination of the two). If you want
to update your local project, then you need to use the Download
Bundle button. This will present you with the Version Control -
Download Bundle form, allowing you to perform a different option for
each unit (country, addon etc.) with a choice between keeping your
local version, overwriting it with the online (VC) version or merging
the two if both have new changes. If on the other hand you want to
update the VC project with changes you have done locally, then you
need to use the Start new online bundle button and follow the steps
to create a new bundle.

[1] If you want to have closer information on logging-in and -out consult Logging in and out.

[2] See Administrate Version Control Users for more information about user rights.

GETTING IN TOUCH WITH THE EU

In person

All over the European Union there are hundreds of Europe Direct information centres. You can find the address of the centre
nearest you at: https://europa.eu/european-union/contact_en

On the phone or by email

Europe Direct is a service that answers your questions about the European Union. You can contact this service:

- by freephone: 00 800 6 7 8 9 10 11 (certain operators may charge for these calls),

- at the following standard number: +32 22999696, or

- by electronic mail via: https://europa.eu/european-union/contact_en

FINDING INFORMATION ABOUT THE EU

Online

Information about the European Union in all the official languages of the EU is available on the Europa website at:
https://europa.eu/european-union/index_en

EU publications

You can download or order free and priced EU publications from EU Bookshop at: https://publications.europa.eu/en/publications.
Multiple copies of free publications may be obtained by contacting Europe Direct or your local information centre (see
https://europa.eu/european-union/contact_en).

https://europa.eu/european-union/contact_en
https://europa.eu/european-union/contact_en
https://europa.eu/european-union/index_en
https://publications.europa.eu/en/publications
https://europa.eu/european-union/contact_en

	Front page
	EUROMOD Help
	EUROMOD Basic Concepts
	EUROMOD input and output
	The EUROMOD user interface
	Presentation of countries' tax-benefit-systems
	EUROMOD terminology
	Working with EUROMOD
	Running EUROMOD
	Changing countries' tax-benefit-systems
	Adding systems
	Renaming systems
	Deleting systems
	Cleaning systems
	Changing the order of systems
	The Hidden Systems Box
	Matrix view of incomelists
	Selecting components and values
	Adding policies
	Deleting policies
	Changing the order of policies
	Copying policies
	Setting policies and functions private
	Changing policy view
	Adding functions
	Deleting functions
	Changing the order of functions
	Copying functions
	Displaying function specifiers
	Presentation of (normal and) special parameters
	Adding parameters
	Changing parameters
	Deleting parameters
	Copying parameter values (and comments)
	Defining uprating factors
	Defining indirect tax rates and excises prices
	Undo and redo
	Expanding and collapsing policies and functions
	Hiding policies, functions and parameters
	Private comments
	Changing text size
	Saving and file locking
	Changing Countries' Settings
	Changing country settings
	Changing system settings
	Configuring datasets
	Finding errors
	Searching and replacing
	Checking component use
	Extensions
	Formatting
	Conditional formatting
	Groups
	Marking nodes with colour
	Setting bookmarks
	Administration of EUROMOD projects
	New project
	Open project
	Configure project
	Help and info
	Administration of countries
	Adding countries / add-ons
	Deleting countries / add-ons
	Importing countries
	Importing and exporting systems
	Importing and exporting add-ons
	Backup - Restore
	Comparing versions of a country
	Generating a EUROMOD public version
	Handling of the decimal and thousand separators in EUROMOD
	Information upon updating progress
	Save country XML-parameter-files formatted
	Administration of EUROMOD variables
	Administrating variables
	Administrating acronyms
	Saving variables and acronyms
	Importing variables
	Cleaning variables
	Applications
	Policy Effects tool
	Plug-ins
	Summary Statistics
	Configuration
	Open project
	Help and info
	Keyboard shortcuts
	EUROMOD Functions
	What are functions and how are they used
	What are functions
	Interactions between functions
	Sorts of functions and brief description of available functions
	Common parameters and general features in interpreting their values
	Common Parameters
	Types of parameter values
	Parameter values and the assessment unit
	Footnote parameters for the further specification of operands
	Identifiers and the placeholders =cc= and =sys=
	Description of functions and their parameters
	The policy function ArithOp
	The policy function Elig
	The policy function BenCalc
	The policy function SchedCalc
	The policy function Allocate
	The policy functions Min and Max
	The system function Uprate
	The system function SetDefault
	The system function DefIL
	The system functions DefTU and UpdateTU
	The system function DefOutput
	The system functions DefVar and DefConst
	The system function InitVars
	The special functions Loop and UnitLoop
	The special functions Store and Restore
	The special function ChangeParam
	The special function ChangeSwitch
	The special function CumulativeSum
	The special function Totals
	The special functions DropUnit and KeepUnit
	The special function IlArithOp
	The special function IlVarOp
	The special function RandSeed
	The special function CallProgramme
	The special function DefInput
	The special function Scale
	The special function AddHHMembers
	The special function Break
	The special functions AddOn_Applic, AddOn_Pol, AddOn_Func and AddOn_Par
	Summary of functions and their parameters
	Summary of parameters for function ArithOp
	Summary of parameters for function Elig
	Summary of parameters for function BenCalc
	Summary of parameters for function SchedCalc
	Summary of parameters for function Allocate
	Summary of parameters for function Min
	Summary of parameters for function Max
	Summary of parameters for function Uprate
	Summary of parameters for function SetDefault
	Summary of parameters for function DefIL
	Summary of parameters for function DefTU
	Summary of parameters for function UpdateTU
	Summary of parameters for function DefOutput
	Summary of parameters for function DefVar
	Summary of parameters for function DefConst
	Summary of parameters for function InitVars
	Summary of parameters for function Loop
	Summary of parameters for function UnitLoop
	Summary of parameters for function Store
	Summary of parameters for function Restore
	Summary of parameters for function ChangeParam
	Summary of parameters for function ChangeSwitch
	Summary of parameters for function CumulativeSum
	Summary of parameters for function Totals
	Summary of parameters for function DropUnit
	Summary of parameters for function KeepUnit
	Summary of parameters for function IlArithOp
	Summary of parameters for function IlVarOp
	Summary of parameters for function RandSeed
	Summary of parameters for function CallProgramme
	Summary of parameters for function DefInput
	Summary of parameters for function Scale
	Summary of parameters for function AddHHMembers
	Summary of parameters for function Break
	Summary of parameters for function AddOn_Applic
	Summary of parameters for function AddOn_Pol
	Summary of parameters for function AddOn_Func
	Summary of parameters for function AddOn_Par
	Summary of parameters for function AddOn_ExtensionSwitch
	The formula/condition syntax
	Queries
	Change log
	EUROMOD Installation and Architecture
	Installing EUROMOD
	EUROMOD software (user interface and executable)
	The configuration file
	Command line parameters
	EUROMOD content (parameter files)
	Organisation of files
	Format of country parameter files
	Format of the variables file
	EUROMOD Version Control
	Workflow guide & basic concepts
	Downloading a VC project bundle
	Creating a new bundle for an existing VC project
	Creating and managing a VC project
	VC forms & functions
	VC Settings
	Logging in and out
	Connecting & Disconnecting a project
	New Project
	Download Bundle
	Start/Finish Merging
	The Merge Tool
	The Merge Tool for Variables
	Administrate Content
	Administrate Users
	Remove Bundles
	Add VC Project
	Remove VC Project
	New bundle from local version

	Back page

