
1

Summary note for EUROMOD

Net Replacement Rate Add-on
Last updated: 18 February 2016

This document provides a short overview of the main features of the Net Replacement Rate (NRR) Add-

on.

1. General aspects

 The NRR Add-On simulates disposable income in case of unemployment for all people currently

in work (i.e. all people observed with positive earnings in the data) and calculates net

replacement rates to unemployment defined as the ratio between household disposable income

in unemployment and household disposable income in employment.1

 For the NRR Add-On to run without errors, it is a requirement for all countries to implement

unemployment benefits according to the EUROMOD Modelling Conventions (link).

 The NRR Add-On works in a similar way as the MTR Add-On. It simulates household disposable

income in a hypothetical case of people in work becoming unemployed and it does it for each

person in the household in turn in case there are multiple earners in the household.

 In order to simulate disposable income in unemployment, the NRR Add-On replaces the values of

earnings by setting them to zero but it also changes the value of other labour market variables

to reflect the change in status from employment to unemployment (e.g. hours of work are set to

zero, labour market status is changed to unemployed).

2. Specific aspects

 Some assumptions need to be made in order to simulate disposable income in case of

unemployment, for individuals observed with positive earnings in the data. First, the duration of

the unemployment spell is set equal to number of months (previously) in employment in order

to compare disposable income in employment and unemployment for the same period of time.

Second, months of contributions to unemployment insurance (contribution history) are assumed

equal to months in employment (adjusted by the length of qualifying period). For instance, in

Estonia contribution history is evaluated over a period of 36 months. In our simulations, months

of contributions would be equal to months (previously) in employment times 36 divided by 12.

 A particular problem arises when simulating disposable income in unemployment for individuals

who in the data are observed receiving both earnings from work but also unemployment benefit

in the income reference period. The problem is technical, in the sense that these individuals fulfil

two conditions in the model that should be in principle considered mutually exclusive. They fulfil

1 As such, the Add-On could be referred more precisely as a NRR to unemployment Add-On.

 2

the conditions: (i) to (part-)simulate unemployment benefit when they are observed receiving

benefit in the data; (ii) of having positive earnings which will be set to zero to simulate

unemployment benefit using the Add-On. Moreover, in case we want to integrate NRR

simulations of unemployment benefits as well as baseline (part-)simulations of unemployment

benefits into the same variable, it is not clear which would be the relevant variables to be used

in the simulation. Which previous earnings would become relevant? Those used in the baseline

simulations (which are based on reverse ruling or imputed wages) or those used in the NRR

simulations (which correspond to earnings before assuming transition into unemployment)? It is

likely that assumptions about the structure of the two different unemployment spells (the one

observed in the data and that assumed for the NNR simulations) would need to be made to

choose the relevant variables.

 For the reasons in the previous point, a particular approach was used to consider individuals with

both positive earnings and unemployment benefit receipt in the data, separately from those with

positive earnings and no unemployment benefit receipt. In order to calculate NRR for the former

group, we disregard the unemployment benefits from their disposable income by setting them to

zero. Then in a second step, we simulate their disposable income in case they had been

unemployed for the same number of months that they had been employed. In this sense we

compare similar durations in employment and unemployment and avoid mixing baseline (part-

)simulations and NRR simulations of unemployment benefits.

 More precisely, the NRR Add-On runs in three iterations of an (outer) loop and two household

level loops (inner loops) . The first iteration of the outer loop runs the EUROMOD baseline as it

is. The second iteration runs after having set to zero the unemployment benefits for those

individuals who have both positive earnings and receive unemployment benefit. The NRR Add-On

sets to zero the unemployment related benefits for each individual in the household in turn (first

inner loop). Finally, the third iteration runs, and calculates household disposable income in case

of unemployment for all the people with positive earnings. If there are multiple earners in the

household, the NRR Add-On runs this third iteration for each individual in the household in turn

(second inner loop).

3. Structure of the NRR Add-On

The NRR Add-On consists of the following policies:

 ao_control_NRR

o defines which country systems the add-on can be run with (AddOn_Applic)

o defines which additional NRR ‘policies’ are added to the policy spine and where

(AddOn_Pol)

o restricts the standard output policy to the baseline results only (AddOn_Par)

 NRR_SWITCH

 3

o switches on or off specific country policies for the NRR simulations (ChangeParam): e.g.

BTA_xx and TCA_xx are switched off in countries where benefit take-up and tax-evasion

adjustments are implemented (and ‘on’ by default).

 NRR_PREP

o performs general adjustments needed before the looping of tax-benefit policies: e.g.

define new TUs, ILs and variables etc.

o stores backup values of variables that will be changed in the add-on

 note all variables are stored at the individual level

o defines/starts the outer loop (named BASE) (Loop): 1st loop is the baseline

o defines/starts the first inner loop (named PREP) (UnitLoop) within the 2nd iteration of the

outer loop: unemployment benefits and months in unemployment are set to zero for

individuals with both positive earnings and unemployment benefit receipt, for each

person in the household in turn, therefore, the number of runs depends on how many

people with positive earnings and unemployment benefits there are in the household

o defines/starts the second inner loop (named NRR) (UnitLoop) within the 3rd iteration of

the outer loop: earnings are set to zero and other labour market variables are adjusted to

simulate disposable income in unemployment, for each person in the household in turn,

therefore, the number of runs depends on how many people with positive earnings there

are in the household

 NRR_PADJ

o runs on the second iteration of the outer loop (Run_Cond: {loopcount_base=2}) for all

individuals

o sets unemployment benefits and months in unemployment to zero for individuals with

both positive earnings and unemployment benefit receipt, for one person at a time in

each household

 NRR_ADJ

o runs on the third iteration of the outer loop (Run_Cond: {loopcount_base=3}) for

individuals with positive earnings

o sets values of the NRR-specific variables, before earnings and labour market variables

are adjusted to represent individuals’ characteristics in unemployment: e.g.

 Identifier of new unemployed: ‘lnu’ is set equal to 1 for all individuals with positive

earnings

 Previous earnings: ‘yempv_a’ is set equal to yem or the income concept used as

base for the unemployment insurance benefit simulation

 Number of moths worked in qualifying period: ‘liwmy_a’ is set equal to liwmy or

yemmy, adjusted by the length of qualifying period

o switches on or off country specific policies in the third loop only (ChangeParam).

 NRR_INIT

 4

o runs on the third iteration of the outer loop (Run_Cond: {loopcount_base=3}) for

individuals with positive earnings

o adjusts values of earnings and labour market variables to represent the situation of

individuals in unemployment: e.g. yem=0; yse=0; lhw=0; lunmy=liwmy; liwmy=0; etc

 note that months in unemployment is set equal to months in employment in order

to compare disposable income in employment and unemployment over a similar

period of time

o switches on or off country specific policies in the third loop only (ChangeParam).

o (Update tax units (UpdateTu) – currently not used)

 NRR_BUN

o runs on the third iteration of the outer loop (Run_Cond: {loopcount_base=3}) for

individuals with positive earnings

o switches on unemployment benefit policies, which are set to toggle in the baseline

o implements particular unemployment benefit policies, not implemented in the country

policy systems

 Note that this should be avoided as country policies should be implemented

directly in the country systems and switched to toggle if they are not simulated in

the baseline.

 NRR_STORE

o stores the baseline results (Store, postloop=base); by default all standard income lists

(ils_*) and their components, and labour market variables

 note all variables are stored at the individual level

 variables stored in the first (baseline) iteration will appear in the output with a

suffix _BASE1

o stores the second iteration results (Store, postloop=prep); by default all standard income

lists (ils_*) and their components, and labour market variables

 note all income lists are stored at the household level by default (as

level=tu_household_nrr)

 however, variables and specific income lists are stored at the individual level (as

il_level=tu_individual_=cc= and Var_level=tu_individual_=cc=)

 variables stored in the second loop will appear in the output with a suffix _PREP

o stores the third iteration results (Store, postloop=nrr); by default all standard income

lists (ils_*) and their components, and labour market variables

 variables for the NRR run have “missing” values (i.e. 9999999) for people from

households not included in that run; those with no earnings

 note all income lists are stored at the household level by default (as

level=tu_household_nrr)

 5

 however, variables and specific income lists are stored at the individual level (as

il_level=tu_individual_=cc= and Var_level=tu_individual_=cc=)

 variables stored in the third iteration will appear in the output with a suffix _NRR

o restores variables to their ‘backup’ values (Restore), after each individual loop within the

household, see also NRR_PREP

 NRR_CALC

o calculates the NRR related indicators:

 change in earnings (ils_earns_diff)

 NRR in percent (nrrpc): nrrpc = (ils_dispy_nrr/ils_dispy_prep)*100

 NRR components in percent, such that nrrpc = nrrpc_pen + nrrpc_benmt +

nrrpc_bennt + nrrpc_tax + nrrpc_sicee + nrrpc_sicse

o (restores baseline results (Restore) – currently not needed and switched off)

 note that this is only limited to the variables listed in NRR_STORE (Store,

postloop=base)

o defines a separate output for NRR results; by default initial earnings, all (standard)

income lists and labour market variables in the baseline; and variables named nrr*, *nrr,

*prep, *base1 or *diff

 note that missing values for variables from the NRR loop (see NRR_STORE) are

replaced with 9999999

4. Modified spine (by default)

…

neg_xx

 ──┐

← NRR_PREP ────┐ ─────┐ │

← NRR_PADJ │second inner │first inner │outer

… │ loop │ loop │loop

Output_std_xx │ (NRR) │ (PREP) │(BASE)

← NRR_STORE ────┘ ─────┘ │

 ──┘

← NRR_CALC

5. Adding extra variables to the NRR output

To output additional variables:

 First iteration (baseline) results

o Add the variable/IL to Store in NRR_STORE (postloop=base) unless already included, e.g.

bsa_s

 6

o Add to DefOutput in NRR_CALC, e.g. bsa_s_base1

 Second iteration results (inner loop prep, base=2)

o Add the variable/IL to Store in NRR_STORE (postloop=prep) unless already included, e.g.

bsa_s

o Specify if the variable/IL in NRR_STORE (postloop=prep) should be stored at the

individual level (Var_level=tu_individual_=cc=)

o Add to DefOutput in NRR_CALC, e.g. bsa_s_prep

 Third iteration results (inner loop nrr, base=3)

o Add the variable/IL to Store in NRR_STORE (postloop=nrr) unless already included, e.g.

bsa_s

o Specify if the variable/IL in NRR_STORE (postloop=nrr) should be stored at the individual

level (Var_level=tu_individual_=cc=)

o Add to DefOutput in NRR_CALC, e.g. bsa_s_nrr

6. Basic Checks of NRR results with Stata

In order to check results with stata the following commands can be used:

su nrrpc* if isulelig_nrr>0 & ils_dispy_prep>0 & ils_dispy_nrr>0, d

isulelig_nrr is the identifier of individuals for which NRR are calculted (those with positive earnings in

the data).

Note that we condition on disposable income to be positive, this is because NRR are not

interpretable in a consistent way when either the numerator or denominator are negative.

While NRR above 100 are completely plausible, some of these cases might represent either outliers

or point to problems with the simulations in EUROMOD. For this reason, it is important to check

these cases on an individual basis to find out which income components (or components

interactions) are driving the results. As a check:2

count if nrrpc>100 & isulelig_nrr>0 & ils_dispy_prep>0 & ils_dispy_nrr>0

count if nrrpc>150 & isulelig_nrr>0 & ils_dispy_prep>0 & ils_dispy_nrr>0

count if nrrpc>200 & isulelig_nrr>0 & ils_dispy_prep>0 & ils_dispy_nrr>0

In case many observations present NRR values above 100, checks should be made to describe what

is driving these results. In order to check results of extreme cases, it might be handy to output

more variables than the ones specified by default in the Add-On (See section 5 above).

2 For participation tax rates (PTR), the relevant variables produced by the add-on are: ptrpc, ptrpc*

